Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 28

1.

Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences.

Melková K, Zapletal V, Narasimhan S, Jansen S, Hritz J, Škrabana R, Zweckstetter M, Ringkjøbing Jensen M, Blackledge M, Žídek L.

Biomolecules. 2019 Mar 16;9(3). pii: E105. doi: 10.3390/biom9030105. Review.

2.

Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics.

Melková K, Zapletal V, Jansen S, Nomilner E, Zachrdla M, Hritz J, Nováček J, Zweckstetter M, Jensen MR, Blackledge M, Žídek L.

J Biol Chem. 2018 Aug 24;293(34):13297-13309. doi: 10.1074/jbc.RA118.001769. Epub 2018 Jun 20.

PMID:
29925592
3.

Free energy calculations on the stability of the 14-3-3ζ protein.

Jandova Z, Trosanova Z, Weisova V, Oostenbrink C, Hritz J.

Biochim Biophys Acta Proteins Proteom. 2018 Mar;1866(3):442-450. doi: 10.1016/j.bbapap.2017.11.012. Epub 2017 Dec 5.

4.

Conformational dynamics are a key factor in signaling mediated by the receiver domain of a sensor histidine kinase from Arabidopsis thaliana.

Otrusinová O, Demo G, Padrta P, Jaseňáková Z, Pekárová B, Gelová Z, Szmitkowska A, Kadeřávek P, Jansen S, Zachrdla M, Klumpler T, Marek J, Hritz J, Janda L, Iwaï H, Wimmerová M, Hejátko J, Žídek L.

J Biol Chem. 2017 Oct 20;292(42):17525-17540. doi: 10.1074/jbc.M117.790212. Epub 2017 Aug 31.

5.
6.

Quantitative mapping of microtubule-associated protein 2c (MAP2c) phosphorylation and regulatory protein 14-3-3ζ-binding sites reveals key differences between MAP2c and its homolog Tau.

Jansen S, Melková K, Trošanová Z, Hanáková K, Zachrdla M, Nováček J, Župa E, Zdráhal Z, Hritz J, Žídek L.

J Biol Chem. 2017 Jun 16;292(24):10316. doi: 10.1074/jbc.A116.771097. No abstract available.

7.

Phosphorylation of the regulatory domain of human tyrosine hydroxylase 1 monitored using non-uniformly sampled NMR.

Louša P, Nedozrálová H, Župa E, Nováček J, Hritz J.

Biophys Chem. 2017 Apr;223:25-29. doi: 10.1016/j.bpc.2017.01.003. Epub 2017 Jan 27.

PMID:
28282625
8.

Quantitative mapping of microtubule-associated protein 2c (MAP2c) phosphorylation and regulatory protein 14-3-3ζ-binding sites reveals key differences between MAP2c and its homolog Tau.

Jansen S, Melková K, Trošanová Z, Hanáková K, Zachrdla M, Nováček J, Župa E, Zdráhal Z, Hritz J, Žídek L.

J Biol Chem. 2017 Apr 21;292(16):6715-6727. doi: 10.1074/jbc.M116.771097. Epub 2017 Mar 3. Erratum in: J Biol Chem. 2017 Jun 16;292(24):10316.

9.

Sequence and structural determinants of human APOBEC3H deaminase and anti-HIV-1 activities.

Mitra M, Singer D, Mano Y, Hritz J, Nam G, Gorelick RJ, Byeon IJ, Gronenborn AM, Iwatani Y, Levin JG.

Retrovirology. 2015 Jan 22;12:3. doi: 10.1186/s12977-014-0130-8.

10.

Dissection of binding between a phosphorylated tyrosine hydroxylase peptide and 14-3-3zeta: A complex story elucidated by NMR.

Hritz J, Byeon IJ, Krzysiak T, Martinez A, Sklenar V, Gronenborn AM.

Biophys J. 2014 Nov 4;107(9):2185-94. doi: 10.1016/j.bpj.2014.08.039.

11.

Deliberate attenuation of chikungunya virus by adaptation to heparan sulfate-dependent infectivity: a model for rational arboviral vaccine design.

Gardner CL, Hritz J, Sun C, Vanlandingham DL, Song TY, Ghedin E, Higgs S, Klimstra WB, Ryman KD.

PLoS Negl Trop Dis. 2014 Feb 20;8(2):e2719. doi: 10.1371/journal.pntd.0002719. eCollection 2014 Feb.

12.

Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer.

Lui VW, Peyser ND, Ng PK, Hritz J, Zeng Y, Lu Y, Li H, Wang L, Gilbert BR, General IJ, Bahar I, Ju Z, Wang Z, Pendleton KP, Xiao X, Du Y, Vries JK, Hammerman PS, Garraway LA, Mills GB, Johnson DE, Grandis JR.

Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1114-9. doi: 10.1073/pnas.1319551111. Epub 2014 Jan 6.

13.

Natural variation in the heparan sulfate binding domain of the eastern equine encephalitis virus E2 glycoprotein alters interactions with cell surfaces and virulence in mice.

Gardner CL, Choi-Nurvitadhi J, Sun C, Bayer A, Hritz J, Ryman KD, Klimstra WB.

J Virol. 2013 Aug;87(15):8582-90. doi: 10.1128/JVI.00937-13. Epub 2013 May 29.

14.

NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity.

Byeon IJ, Ahn J, Mitra M, Byeon CH, Hercík K, Hritz J, Charlton LM, Levin JG, Gronenborn AM.

Nat Commun. 2013;4:1890. doi: 10.1038/ncomms2883.

15.

Malleability and versatility of cytochrome P450 active sites studied by molecular simulations.

Oostenbrink C, de Ruiter A, Hritz J, Vermeulen N.

Curr Drug Metab. 2012 Feb;13(2):190-6.

PMID:
22208533
16.

Calculations of binding affinity between C8-substituted GTP analogs and the bacterial cell-division protein FtsZ.

Hritz J, Läppchen T, Oostenbrink C.

Eur Biophys J. 2010 Nov;39(12):1573-80. doi: 10.1007/s00249-010-0614-y. Epub 2010 Jun 18.

17.

Role of water in molecular docking simulations of cytochrome P450 2D6.

Santos R, Hritz J, Oostenbrink C.

J Chem Inf Model. 2010 Jan;50(1):146-54. doi: 10.1021/ci900293e.

PMID:
19899781
18.

A library of fluorescent peptides for exploring the substrate specificities of prolyl isomerases.

Zoldák G, Aumüller T, Lücke C, Hritz J, Oostenbrink C, Fischer G, Schmid FX.

Biochemistry. 2009 Nov 3;48(43):10423-36. doi: 10.1021/bi9014242.

PMID:
19785464
19.

Efficient free energy calculations for compounds with multiple stable conformations separated by high energy barriers.

Hritz J, Oostenbrink C.

J Phys Chem B. 2009 Sep 24;113(38):12711-20. doi: 10.1021/jp902968m.

PMID:
19722597
20.

Virtual screening and prediction of site of metabolism for cytochrome P450 1A2 ligands.

Vasanthanathan P, Hritz J, Taboureau O, Olsen L, Jørgensen FS, Vermeulen NP, Oostenbrink C.

J Chem Inf Model. 2009 Jan;49(1):43-52. doi: 10.1021/ci800371f.

PMID:
19099399

Supplemental Content

Loading ...
Support Center