Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 70

1.

High-Throughput, Sensitive LC-MS Quantification of Biotherapeutics and Biomarkers Using Antibody-Free, Peptide-Level, Multiple-Mechanism Enrichment via Strategic Regulation of pH and Ionic and Solvent Strengths.

An B, Zhang M, Pu J, Shen S, Qu Y, Chen YJ, Huo S, Wang X, Polli JR, Balthasar JP, Herzog D, Ferrari L, Staack RF, Richter WF, Otteneder MB, Benincosa LJ, Zhou S, Vazvaei F, Qu J.

Anal Chem. 2019 Mar 5;91(5):3475-3483. doi: 10.1021/acs.analchem.8b05046. Epub 2019 Feb 15.

PMID:
30712341
2.

Antibody Dependent Enhancement of Acinetobacter baumannii Infection in a Mouse Pneumonia Model.

Wang-Lin SX, Olson R, Beanan JM, MacDonald U, Russo TA, Balthasar JP.

J Pharmacol Exp Ther. 2019 Mar;368(3):475-489. doi: 10.1124/jpet.118.253617. Epub 2019 Jan 3.

PMID:
30606761
3.

Physiologically-based modeling of monoclonal antibody pharmacokinetics in drug discovery and development.

Glassman PM, Balthasar JP.

Drug Metab Pharmacokinet. 2019 Feb;34(1):3-13. doi: 10.1016/j.dmpk.2018.11.002. Epub 2018 Nov 22. Review.

PMID:
30522890
4.
5.

Application of Physiologically Based Pharmacokinetic Modeling to Predict the Effects of FcRn Inhibitors in Mice, Rats, and Monkeys.

Li T, Balthasar JP.

J Pharm Sci. 2019 Jan;108(1):701-713. doi: 10.1016/j.xphs.2018.10.065. Epub 2018 Nov 10.

PMID:
30423340
6.

Fifty-Eight Years and Counting: High-Impact Publishing in Computational Pharmaceutical Sciences and Mechanism-Based Modeling.

Amidon GE, Anderson BD, Balthasar JP, Bergstrom CAS, Huang SM, Kasting G, Kesisoglou F, Khinast JG, Mager DE, Roberts CJ, Yu L.

J Pharm Sci. 2019 Jan;108(1):2-7. doi: 10.1016/j.xphs.2018.11.002. Epub 2018 Nov 10.

PMID:
30423338
7.

FcRn Expression in Wildtype Mice, Transgenic Mice, and in Human Tissues.

Li T, Balthasar JP.

Biomolecules. 2018 Oct 15;8(4). pii: E115. doi: 10.3390/biom8040115.

8.

Physiologically Based Modeling of the Pharmacokinetics of "Catch-and-Release" Anti-Carcinoembryonic Antigen Monoclonal Antibodies in Colorectal Cancer Xenograft Mouse Models.

Polli JR, Engler FA, Balthasar JP.

J Pharm Sci. 2019 Jan;108(1):674-691. doi: 10.1016/j.xphs.2018.09.037. Epub 2018 Oct 12.

PMID:
30321546
9.

"Catch-and-Release" Anti-Carcinoembryonic Antigen Monoclonal Antibody Leads to Greater Plasma and Tumor Exposure in a Mouse Model of Colorectal Cancer.

Engler FA, Polli JR, Li T, An B, Otteneder M, Qu J, Balthasar JP.

J Pharmacol Exp Ther. 2018 Jul;366(1):205-219. doi: 10.1124/jpet.117.246900. Epub 2018 May 7.

PMID:
29735609
10.

Sensitive, High-Throughput, and Robust Trapping-Micro-LC-MS Strategy for the Quantification of Biomarkers and Antibody Biotherapeutics.

Zhang M, An B, Qu Y, Shen S, Fu W, Chen YJ, Wang X, Young R, Canty JM Jr, Balthasar JP, Murphy K, Bhattacharyya D, Josephs J, Ferrari L, Zhou S, Bansal S, Vazvaei F, Qu J.

Anal Chem. 2018 Feb 6;90(3):1870-1880. doi: 10.1021/acs.analchem.7b03949. Epub 2018 Jan 8.

11.

The Capsular Polysaccharide of Acinetobacter baumannii Is an Obstacle for Therapeutic Passive Immunization Strategies.

Wang-Lin SX, Olson R, Beanan JM, MacDonald U, Balthasar JP, Russo TA.

Infect Immun. 2017 Nov 17;85(12). pii: e00591-17. doi: 10.1128/IAI.00591-17. Print 2017 Dec.

12.

Investigation of the Influence of Protein-Losing Enteropathy on Monoclonal Antibody Pharmacokinetics in Mice.

Yang Y, Li TR, Balthasar JP.

AAPS J. 2017 Nov;19(6):1791-1803. doi: 10.1208/s12248-017-0135-z. Epub 2017 Aug 28.

PMID:
28849396
13.

Physiologically-based modeling to predict the clinical behavior of monoclonal antibodies directed against lymphocyte antigens.

Glassman PM, Balthasar JP.

MAbs. 2017 Feb/Mar;9(2):297-306. doi: 10.1080/19420862.2016.1261775. Epub 2016 Nov 28.

14.

Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies.

Glassman PM, Balthasar JP.

J Pharmacokinet Pharmacodyn. 2016 Aug;43(4):427-46. doi: 10.1007/s10928-016-9482-0. Epub 2016 Jul 4.

PMID:
27377311
15.

Development and validation of an enzyme-linked immunosorbent assay for the quantification of gelonin in mouse plasma.

Engler FA, Balthasar JP.

J Immunoassay Immunochem. 2016;37(6):611-22. doi: 10.1080/15321819.2016.1182551.

PMID:
27135787
16.

Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry.

Qu M, An B, Shen S, Zhang M, Shen X, Duan X, Balthasar JP, Qu J.

Mass Spectrom Rev. 2017 Nov;36(6):734-754. doi: 10.1002/mas.21500. Epub 2016 Apr 20. Review.

PMID:
27097288
17.

Application of a catenary PBPK model to predict the disposition of "catch and release" anti-PCSK9 antibodies.

Glassman PM, Balthasar JP.

Int J Pharm. 2016 May 30;505(1-2):69-78. doi: 10.1016/j.ijpharm.2016.03.066. Epub 2016 Mar 31.

PMID:
27041125
18.

Sorafenib Decreases Tumor Exposure to an Anti-carcinoembryonic Antigen Monoclonal Antibody in a Mouse Model of Colorectal Cancer.

Thomas VA, Balthasar JP.

AAPS J. 2016 Jul;18(4):923-32. doi: 10.1208/s12248-016-9909-y. Epub 2016 Mar 30.

PMID:
27029796
19.

Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys.

Glassman PM, Chen Y, Balthasar JP.

J Pharmacokinet Pharmacodyn. 2015 Oct;42(5):527-40. doi: 10.1007/s10928-015-9444-y. Epub 2015 Sep 12.

PMID:
26364301
20.

Assessments of antibody biodistribution.

Glassman PM, Abuqayyas L, Balthasar JP.

J Clin Pharmacol. 2015 Mar;55 Suppl 3:S29-38. doi: 10.1002/jcph.365. Review.

PMID:
25707961

Supplemental Content

Loading ...
Support Center