Format

Send to

Choose Destination
Materials (Basel). 2019 Apr 16;12(8). pii: E1253. doi: 10.3390/ma12081253.

Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption.

Author information

1
Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France. julien.kiener@yahoo.com.
2
Université de Strasbourg, F-67081 Strasbourg, France. julien.kiener@yahoo.com.
3
Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France. Lionel.limousy@uha.fr.
4
Université de Strasbourg, F-67081 Strasbourg, France. Lionel.limousy@uha.fr.
5
Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France. Mejdi.jeguirim@uha.fr.
6
Université de Strasbourg, F-67081 Strasbourg, France. Mejdi.jeguirim@uha.fr.
7
Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France. Jean-Marc.Le-meins@uha.fr.
8
Université de Strasbourg, F-67081 Strasbourg, France. Jean-Marc.Le-meins@uha.fr.
9
Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France. samar.hajjar@uha.fr.
10
Université de Strasbourg, F-67081 Strasbourg, France. samar.hajjar@uha.fr.
11
ONET Technologies, 36 Bd de l'Océan-CS 20280, 13258 Marseille, France. gbigoin@onet.fr.
12
Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France. camelia.ghimbeu@uha.fr.
13
Université de Strasbourg, F-67081 Strasbourg, France. camelia.ghimbeu@uha.fr.

Abstract

Transition metal hexacyanoferrate/microporous activated carbon composites were obtained using a simple successive impregnation approach. The effect of metal type (nickel, indium, or copper), and the carbon oxidation on the composite characteristics (porosity, metal structure, and particle size), as well as on the removal efficiency of cesium from aqueous solution was investigated. Successful formation of the desired metal hexacyanoferrate phase was achieved and the size of the metallic nanoparticles and their dispersion in the carbon network was found to depend on the metal type, with the indium and nickel-based materials exhibiting the smallest particle size distribution (< 10 nm). Adsorption tests performed under batch conditions demonstrate that the copper hexacyanoferrate/activated carbon composite present the highest cesium removal capacity from aqueous solution (74.7 mg·g-1) among the three studied metal-based nanocomposites. The carbon oxidation treatment leads to the increase in the number of functional groups to the detriment of the porosity but allows for an improvement in the Cs adsorption capacity. This indicates that the Cs adsorption process is governed by the carbon surface chemistry and not its porosity. Moreover, combining oxidized carbon support with copper hexacyanoferrate induces the highest cesium adsorption capacity (101.5 mg·g-1). This could be related to synergistic effects through two absorption mechanisms, i.e., a cation exchange mechanism of Cs with the metallic hexacyanoferrate phase and Cs adsorption via carbon oxygen surface groups, as demonstrated using X-ray photoelectron spectroscopy (XPS) analyses.

KEYWORDS:

Cs adsorption; activated carbon; impregnation; potassium metal hexacyanoferrate

PMID:
30995768
DOI:
10.3390/ma12081253
Free full text

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI)
Loading ...
Support Center