Format

Send to

Choose Destination
Nanomaterials (Basel). 2019 Mar 18;9(3). pii: E452. doi: 10.3390/nano9030452.

Reactivity of Atomically Functionalized C-Doped Boron Nitride Nanoribbons and Their Interaction with Organosulfur Compounds.

Author information

1
Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico. fvillamejia@gmail.com.
2
Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico. pnavarrosa@conacyt.mx.
3
Laboratorio de Cómputo de Alto Desempeño, CONACYT-Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-1, Ciudad Universitaria, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico. pnavarrosa@conacyt.mx.
4
Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera Progreso, Apdo. Postal 73, Cordemex, Mérida 97310, Yucatán, Mexico. peter.rodriguez@cinvestav.mx.
5
Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico. rhbucio@umich.mx.
6
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico. jlrivera@umich.mx.

Abstract

The electronic and reactivity properties of carbon doped (C-doped) boron nitride nanoribbons (BNNRs) as a function of the carbon concentration were investigated in the framework of the density functional theory within the generalized gradient approximation. We found that the main routes to stabilize energetically the C-doped BNNRs involve substituting boron atoms near the edges. However, the effect of doping on the electronic properties depends of the sublattice where the C atoms are located; for instance, negative doping (partial occupations of electronic states) is found replacing B atoms, whereas positive doping (partial inoccupation of electronic states) is found when replacing N atoms with respect to the pristine BNNRs. Independently of the even or odd number of dopants of the C-doped BNNRs studied in this work, the solutions of the Kohn Sham equations suggest that the most stable solution is the magnetic one. The reactivity of the C-doped BNNRs is inferred from results of the dual descriptor, and it turns out that the main electrophilic sites are located near the dopants along the C-doped BNNRs. The reactivity of these nanostructures is tested by calculating the interaction energy between undesirable organosulfur compounds present in oil fuels on the C-doped BNNRs, finding that organosulfur compounds prefer to interact over nanosurfaces with dopants substituted on the B sublattice of the C-doped BNNRs. Most importantly, the selective C doping on the BNNRs offers the opportunity to tune the properties of the BNNRs to fit novel technological applications.

KEYWORDS:

4,6-DMDBT; DBT; Fukui functions; boron nitride nanoribbons; thiophene

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center