Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 24

1.

Evaluation of microbial proliferation on cementitious materials exposed to biogas systems.

Voegel C, Durban N, Bertron A, Landon Y, Erable B.

Environ Technol. 2019 Jan 9:1-11. doi: 10.1080/09593330.2019.1567610. [Epub ahead of print]

PMID:
30624151
2.

Iron-Nicarbazin derived platinum group metal-free electrocatalyst in scalable-size air-breathing cathodes for microbial fuel cells.

Erable B, Oliot M, Lacroix R, Bergel A, Serov A, Kodali M, Santoro C, Atanassov P.

Electrochim Acta. 2018 Jul 1;277:127-135. doi: 10.1016/j.electacta.2018.04.190.

3.

Microbial fuel cells: From fundamentals to applications. A review.

Santoro C, Arbizzani C, Erable B, Ieropoulos I.

J Power Sources. 2017 Jul 15;356:225-244. doi: 10.1016/j.jpowsour.2017.03.109.

4.

Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics.

Rimboud M, Barakat M, Bergel A, Erable B.

Bioelectrochemistry. 2017 Aug;116:24-32. doi: 10.1016/j.bioelechem.2017.03.001. Epub 2017 Mar 6.

PMID:
28364576
5.

Biocathodes reducing oxygen at high potential select biofilms dominated by Ectothiorhodospiraceae populations harboring a specific association of genes.

Desmond-Le Quéméner E, Rimboud M, Bridier A, Madigou C, Erable B, Bergel A, Bouchez T.

Bioresour Technol. 2016 Aug;214:55-62. doi: 10.1016/j.biortech.2016.04.087. Epub 2016 Apr 19.

PMID:
27126080
6.

Multiple electron transfer systems in oxygen reducing biocathodes revealed by different conditions of aeration/agitation.

Rimboud M, Bergel A, Erable B.

Bioelectrochemistry. 2016 Aug;110:46-51. doi: 10.1016/j.bioelechem.2016.03.002. Epub 2016 Mar 16.

PMID:
27035588
7.

Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions.

Santoro C, Babanova S, Erable B, Schuler A, Atanassov P.

Bioelectrochemistry. 2016 Apr;108:1-7. doi: 10.1016/j.bioelechem.2015.10.005. Epub 2015 Oct 28.

PMID:
26544631
8.

Multi-system Nernst-Michaelis-Menten model applied to bioanodes formed from sewage sludge.

Rimboud M, Desmond-Le Quemener E, Erable B, Bouchez T, Bergel A.

Bioresour Technol. 2015 Nov;195:162-9. doi: 10.1016/j.biortech.2015.05.069. Epub 2015 May 25.

PMID:
26027903
9.

Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: Application to food waste treatment.

Blanchet E, Desmond E, Erable B, Bridier A, Bouchez T, Bergel A.

Bioresour Technol. 2015 Jun;185:106-15. doi: 10.1016/j.biortech.2015.02.097. Epub 2015 Mar 2.

PMID:
25765989
10.

The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community.

Rimboud M, Desmond-Le Quemener E, Erable B, Bouchez T, Bergel A.

Bioelectrochemistry. 2015 Apr;102:42-9. doi: 10.1016/j.bioelechem.2014.11.006. Epub 2014 Nov 29.

PMID:
25483999
11.

Protons accumulation during anodic phase turned to advantage for oxygen reduction during cathodic phase in reversible bioelectrodes.

Blanchet E, Pécastaings S, Erable B, Roques C, Bergel A.

Bioresour Technol. 2014 Dec;173:224-230. doi: 10.1016/j.biortech.2014.09.076. Epub 2014 Oct 8.

PMID:
25305652
12.

Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals.

Alquier M, Kassim C, Bertron A, Sablayrolles C, Rafrafi Y, Albrecht A, Erable B.

J Environ Manage. 2014 Jan;132:32-41. doi: 10.1016/j.jenvman.2013.10.013. Epub 2013 Nov 25.

PMID:
24275342
13.

Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells.

Pocaznoi D, Erable B, Etcheverry L, Delia ML, Bergel A.

Phys Chem Chem Phys. 2012 Oct 14;14(38):13332-43. doi: 10.1039/c2cp42571h.

PMID:
22932946
14.

Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review.

Erable B, Féron D, Bergel A.

ChemSusChem. 2012 Jun;5(6):975-87. doi: 10.1002/cssc.201100836. Epub 2012 May 21. Review.

PMID:
22615123
15.

Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required.

Pocaznoi D, Erable B, Etcheverry L, Delia ML, Bergel A.

Bioresour Technol. 2012 Jun;114:334-41. doi: 10.1016/j.biortech.2012.03.042. Epub 2012 Mar 19.

PMID:
22483348
16.

From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater.

Erable B, Etcheverry L, Bergel A.

Biofouling. 2011 Mar;27(3):319-26. doi: 10.1080/08927014.2011.564615.

PMID:
21409654
17.

Application of electro-active biofilms.

Erable B, Duţeanu NM, Ghangrekar MM, Dumas C, Scott K.

Biofouling. 2010 Jan;26(1):57-71. doi: 10.1080/08927010903161281. Review.

PMID:
20390557
18.

Marine aerobic biofilm as biocathode catalyst.

Erable B, Vandecandelaere I, Faimali M, Delia ML, Etcheverry L, Vandamme P, Bergel A.

Bioelectrochemistry. 2010 Apr;78(1):51-6. doi: 10.1016/j.bioelechem.2009.06.006. Epub 2009 Jun 21.

PMID:
19643681
19.

Sampling natural biofilms: a new route to build efficient microbial anodes.

Erable B, Roncato MA, Achouak W, Bergel A.

Environ Sci Technol. 2009 May 1;43(9):3194-9.

PMID:
19534134
20.

First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm.

Erable B, Bergel A.

Bioresour Technol. 2009 Jul;100(13):3302-7. doi: 10.1016/j.biortech.2009.02.025. Epub 2009 Mar 16.

PMID:
19289272

Supplemental Content

Loading ...
Support Center