Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 129

1.

Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency.

Salminen A, Kaarniranta K, Kauppinen A.

Cell Mol Life Sci. 2019 May;76(10):1901-1918. doi: 10.1007/s00018-019-03048-x. Epub 2019 Feb 20. Review.

2.

Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration.

Felszeghy S, Viiri J, Paterno JJ, Hyttinen JMT, Koskela A, Chen M, Leinonen H, Tanila H, Kivinen N, Koistinen A, Toropainen E, Amadio M, Smedowski A, Reinisalo M, Winiarczyk M, Mackiewicz J, Mutikainen M, Ruotsalainen AK, Kettunen M, Jokivarsi K, Sinha D, Kinnunen K, Petrovski G, Blasiak J, Bjørkøy G, Koskelainen A, Skottman H, Urtti A, Salminen A, Kannan R, Ferrington DA, Xu H, Levonen AL, Tavi P, Kauppinen A, Kaarniranta K.

Redox Biol. 2019 Jan;20:1-12. doi: 10.1016/j.redox.2018.09.011. Epub 2018 Sep 14.

3.

The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process.

Salminen A, Kaarniranta K, Kauppinen A.

Ageing Res Rev. 2018 Dec;48:1-10. doi: 10.1016/j.arr.2018.09.001. Epub 2018 Sep 21. Review.

PMID:
30248408
4.

Fatty acids and oxidized lipoproteins contribute to autophagy and innate immunity responses upon the degeneration of retinal pigment epithelium and development of age-related macular degeneration.

Kaarniranta K, Koskela A, Felszeghy S, Kivinen N, Salminen A, Kauppinen A.

Biochimie. 2019 Apr;159:49-54. doi: 10.1016/j.biochi.2018.07.010. Epub 2018 Jul 18. Review.

PMID:
30031036
5.

Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence.

Salminen A, Kauppinen A, Kaarniranta K.

Biogerontology. 2018 Oct;19(5):325-339. doi: 10.1007/s10522-018-9762-8. Epub 2018 Jun 29. Review.

PMID:
29959657
6.

Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders.

Salminen A, Kaarniranta K, Kauppinen A.

Int Immunopharmacol. 2018 Aug;61:231-240. doi: 10.1016/j.intimp.2018.06.005. Epub 2018 Jun 9. Review.

PMID:
29894862
7.

The potential importance of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of Alzheimer's disease.

Salminen A, Kaarniranta K, Kauppinen A.

Cell Mol Life Sci. 2018 Sep;75(17):3099-3120. doi: 10.1007/s00018-018-2844-6. Epub 2018 May 19. Review.

PMID:
29779041
8.

Integrated stress response stimulates FGF21 expression: Systemic enhancer of longevity.

Salminen A, Kaarniranta K, Kauppinen A.

Cell Signal. 2017 Dec;40:10-21. doi: 10.1016/j.cellsig.2017.08.009. Epub 2017 Aug 24. Review.

PMID:
28844867
9.

Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses.

Salminen A, Kaarniranta K, Kauppinen A.

Ageing Res Rev. 2017 Aug;37:79-93. doi: 10.1016/j.arr.2017.05.004. Epub 2017 May 25. Review.

PMID:
28552719
10.

DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells-Implications for age-related macular degeneration (AMD).

Hyttinen JMT, Błasiak J, Niittykoski M, Kinnunen K, Kauppinen A, Salminen A, Kaarniranta K.

Ageing Res Rev. 2017 Jul;36:64-77. doi: 10.1016/j.arr.2017.03.006. Epub 2017 Mar 27. Review.

PMID:
28351686
11.

Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer's disease.

Salminen A, Kauppinen A, Kaarniranta K.

J Neurochem. 2017 Feb;140(4):536-549. doi: 10.1111/jnc.13932. Epub 2017 Jan 9. Review.

12.

FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process.

Salminen A, Kauppinen A, Kaarniranta K.

J Mol Med (Berl). 2017 Feb;95(2):123-131. doi: 10.1007/s00109-016-1477-1. Epub 2016 Sep 27. Review.

PMID:
27678528
13.

AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms.

Salminen A, Kaarniranta K, Kauppinen A.

Biogerontology. 2016 Aug;17(4):655-80. doi: 10.1007/s10522-016-9655-7. Epub 2016 Jun 3. Review.

PMID:
27259535
14.

Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases.

Salminen A, Kaarniranta K, Kauppinen A.

Aging Dis. 2016 Mar 15;7(2):180-200. doi: 10.14336/AD.2015.0929. eCollection 2016 Mar. Review.

15.

Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways.

Salminen A, Kaarniranta K, Kauppinen A.

Ageing Res Rev. 2016 Jul;28:15-26. doi: 10.1016/j.arr.2016.04.003. Epub 2016 Apr 6. Review.

PMID:
27060201
16.

AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions.

Salminen A, Kauppinen A, Kaarniranta K.

Cell Signal. 2016 Aug;28(8):887-95. doi: 10.1016/j.cellsig.2016.03.009. Epub 2016 Mar 20. Review.

PMID:
27010499
17.

Inflammation and its role in age-related macular degeneration.

Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K.

Cell Mol Life Sci. 2016 May;73(9):1765-86. doi: 10.1007/s00018-016-2147-8. Epub 2016 Feb 6. Review.

18.

Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease.

Salminen A, Jouhten P, Sarajärvi T, Haapasalo A, Hiltunen M.

Neurochem Int. 2016 Jan;92:13-24. doi: 10.1016/j.neuint.2015.11.005. Epub 2015 Nov 23. Review.

PMID:
26617286
19.

BET Inhibition Upregulates SIRT1 and Alleviates Inflammatory Responses.

Kokkola T, Suuronen T, Pesonen M, Filippakopoulos P, Salminen A, Jarho EM, Lahtela-Kakkonen M.

Chembiochem. 2015 Sep 21;16(14):1997-2001. doi: 10.1002/cbic.201500272. Epub 2015 Aug 13.

20.

2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process.

Salminen A, Kauppinen A, Kaarniranta K.

Cell Mol Life Sci. 2015 Oct;72(20):3897-914. doi: 10.1007/s00018-015-1978-z. Epub 2015 Jun 29. Review.

PMID:
26118662

Supplemental Content

Loading ...
Support Center