Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1574-8.

Multinuclear solid-state three-dimensional MRI of bone and synthetic calcium phosphates.

Author information

  • 1Biomaterials Laboratory, NMR Center, Room 2301, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.


Multinuclear three-dimensional solid-state MRI of bone, tooth, and synthetic calcium phosphates is demonstrated in vitro and in vivo with a projection reconstruction technique based on acquisition of free induction decays in the presence of fixed amplitude magnetic field gradients. Phosphorus-31 solid-state MRI provides direct images of the calcium phosphate constituents of bone substance and is a quantitative measurement of the true volumetric bone mineral density of the bone. Proton solid-state MRI shows the density of bone matrix including its organic constituents, which consist principally of collagen. These solid-state MRI methods promise to yield a biological picture of bone richer in information concerning the bone composition and short range-crystalline order than the fluid-state images provided by conventional proton MRI or the density images produced by radiologic imaging techniques. Three-dimensional solid-state projection reconstruction MRI should be readily adaptable to both human clinical use and nonmedical applications for a variety of solids in materials science.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center