Role of desensitization and subunit expression for kainate receptor-mediated neurotoxicity in murine neocortical cultures

J Neurosci Res. 1999 Jan 15;55(2):208-17. doi: 10.1002/(SICI)1097-4547(19990115)55:2<208::AID-JNR8>3.0.CO;2-P.

Abstract

The neurotoxic actions of kainate and domoate were studied in cultured murine neocortical neurons at various days in culture and found to be developmentally regulated involving three components of neurotoxicity: (1) toxicity via indirect activation of N-methyl-D-aspartate (NMDA) receptors, (2) toxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, and (3) toxicity that can be mediated by kainate receptors when desensitization of the receptors is blocked. The indirect action at NMDA receptors was discovered because (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-im ine (MK-801), an NMDA receptor antagonist, was able to block part of the toxicity. The activation of NMDA receptors is most likely a secondary effect resulting from glutamate release upon kainate or domoate stimulation. 1-(4-Aminophenyl)-3-methylcarbamyl-4-methyl-3,4-dihydro-7,8-ethyle nedioxy-5H-2,3-benzodiazepine (GYKI 53655), a selective AMPA receptor antagonist, abolished the remaining toxicity. These results indicated that kainate- and domoate-mediated toxicity involves both the NMDA and the AMPA receptors. Pretreatment of the cultures with concanavalin A to prevent desensitization of kainate receptors led to an increased neurotoxicity upon stimulation with kainate or domoate. In neurons cultured for 12 days in vitro a small but significant neurotoxic effect was observed when stimulated with agonist in the presence of MK-801 and GYKI 53655. This indicates that the toxicity is produced by kainate receptors in mature cultures. Examining the subunit expression of the kainate receptor subunits GluR6/7 and KA2 did, however, not reveal any major change during development of the cultures.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Benzodiazepines / pharmacology
  • Blotting, Western
  • Cell Survival / drug effects
  • Cells, Cultured
  • Dizocilpine Maleate / pharmacology
  • Excitatory Amino Acid Agonists / toxicity
  • Excitatory Amino Acid Antagonists / pharmacology
  • Kainic Acid / analogs & derivatives
  • Kainic Acid / toxicity
  • Mice
  • Neocortex / cytology*
  • Neocortex / drug effects
  • Neuromuscular Depolarizing Agents / toxicity
  • Neurotoxins / toxicity*
  • Quinoxalines / pharmacology
  • Receptors, AMPA / antagonists & inhibitors
  • Receptors, Kainic Acid / antagonists & inhibitors
  • Receptors, Kainic Acid / biosynthesis*
  • Receptors, Kainic Acid / drug effects*
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / drug effects

Substances

  • Excitatory Amino Acid Agonists
  • Excitatory Amino Acid Antagonists
  • Neuromuscular Depolarizing Agents
  • Neurotoxins
  • Quinoxalines
  • Receptors, AMPA
  • Receptors, Kainic Acid
  • Receptors, N-Methyl-D-Aspartate
  • 2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline
  • Benzodiazepines
  • GYKI 53655
  • Dizocilpine Maleate
  • domoic acid
  • Kainic Acid