Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1999 Feb;276(2 Pt 1):C379-85.

Effect of progesterone on intracellular Ca2+ homeostasis in human myometrial smooth muscle cells.

Author information

  • 1Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.


Although it is well known that progesterone alters uterine contractility and plays an important role in maintenance of pregnancy, the biochemical mechanisms by which progesterone alters uterine contractility in human gestation are less clear. In this investigation we sought to identify progesterone-induced adaptations in human myometrial smooth muscle cells that may alter Ca2+ signaling in response to contractile agents. Cells were treated with vehicle or the progesterone analog medroxyprogesterone acetate (MPA) for 5 days, and intracellular free Ca2+ concentration ([Ca2+]i) was quantified after treatment with oxytocin (OX) or endothelin (ET)-1. OX- and ET-1-induced increases in [Ca2+]i were significantly attenuated in cells pretreated with MPA in a dose-dependent manner. Progesterone receptor antagonists prevented the attenuated Ca2+ transients induced by MPA. ETA and ETB receptor subtypes were expressed in myometrial cells, and treatment with MPA resulted in significant downregulation of ETA and ETB receptor binding. MPA did not alter ionomycin-stimulated increases in [Ca2+]i and had no effect on inositol trisphosphate-dependent or -independent release of Ca2+ from internal Ca2+ stores. We conclude that adaptations of Ca2+ homeostasis in myometrial cells during pregnancy may include progesterone-induced modification of receptor-mediated increases in [Ca2+]i.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center