Format

Send to

Choose Destination
See comment in PubMed Commons below
Pharm Res. 1999 Jan;16(1):55-61.

Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux.

Author information

1
Department of Pharmacy, Institute of Pharmaceutics and Biopharmaceutics, Martin-Luther-University Halle-Wittenberg, Halle, Germany.

Abstract

PURPOSE:

This study on the intestinal transport of beta-lactam antibiotics was undertaken to investigate the correlation between cellular transport parameters and the bioavailability.

METHODS:

Transport of 23 beta-lactam antibiotics was characterized by measuring their ability to inhibit the uptake of glycylsarcosine into Caco-2 cells, their uptake into the cells and their total flux across the cell monolayers.

RESULTS:

Ceftibuten and cyclacillin were recognized by PEPT1 with affinity constants comparable to those of natural dipeptides (K(i) = 0.3 and 0.5 mM, respectively). Cefadroxil, cefamandole, cephradine, cefaclor, cefuroxime-axetil, cefixime, cephalotin, cephalexin and ampicillin also interacted with PEPTI (K(i) = 7-14 mM). In contrast, cefapirin, cefodizime, cefuroxime, cefmetazole, ceftazidime, benzyl-penicillin, ceftriaxone, cefpirome, cefotaxime, cefepime, cephaloridine and cefsulodin displayed no affinity to the transport system (K(i) > 20 mM). The uptake into the cells and the transepithelial flux was highest for those beta-lactam antibiotics, which showed the strongest inhibition of [14C]Gly-Sar transport (p < 0.0001). Exceptions were cefuroximaxetil and cephalotin.

CONCLUSIONS:

The probability of oral bioavailability for beta-lactam antibiotics is mainly determined by their affinity to PEPTI. A threshold K(i) value of 14 mM with respect to Gly-Sar uptake is required.

PMID:
9950279
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Loading ...
    Support Center