Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 1999 Feb;151(2):585-96.

The translocation-associated tox1 locus of Cochliobolus heterostrophus is two genetic elements on two different chromosomes.

Author information

  • 1Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA.

Abstract

Previously, Tox1 was defined as a single genetic element controlling the difference between races of Cochliobolus heterostrophus: race T is highly virulent on T-cytoplasm corn and produces the polyketide T-toxin; race O is weakly virulent and does not produce T-toxin. Here we report that Tox1 is two loci, Tox1A and Tox1B, on two different chromosomes. Evidence for two loci derives from: (1) the appearance of 25% Tox+ progeny in crosses between induced Tox1(-) mutants, one defective at Tox1A, the other at Tox1B; (2) the ability of Tox1A- + Tox1B- heterokaryons to complement for T-toxin production; and (3) electrophoretic karyotypes proving that Tox1(-) mutations are physically located on two different chromosomes. Data showing Tox1 as a single genetic element are reconciled with those proving it is two loci by the fact that Tox1 is inseparably linked to the breakpoints of a reciprocal translocation; the translocation results in a four-armed linkage group. In crosses where the translocation is heterozygous (i.e., race T by race O), all markers linked to the four-armed intersection appear linked to each other; in crosses between induced Tox1(-) mutants, complications due to the translocation are eliminated and the two loci segregate independently.

PMID:
9927453
PMCID:
PMC1460483
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center