Format

Send to

Choose Destination
Syst Appl Microbiol. 1998 Dec;21(4):569-78.

Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria.

Author information

1
Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg.

Abstract

In rice paddy fields the bulk soil is anoxic, but oxygenated zones occur in the surrounding of the rice roots to where oxygen is transported via the aerenchyma system of the rice plants. In the anaerobic soil compartments sulfate is consumed by sulfate-reducing bacteria. In the rhizosphere the reduced sulfur compounds can be reoxidized by sulfur-oxidizing bacteria. Measurements of the potential activity of thiosulfate-oxidizing bacteria in soil slurries derived from planted rice soil microcosms showed turnover rates of 2-6 mumol d-1 g-dw-1. Thiosulfate was oxidized to sulfate with tetrathionate as intermediate. Most probable number (MPN) enumeration with three aerobic media and one anaerobic nitrate-amended medium showed that thiosulfate-oxidizing bacteria were abundant in paddy soil and in rhizosphere soil at numbers of 10(5) to 10(6) per gram dry weight soil. Nine isolates of S-oxidizing bacteria were obtained from enrichment cultures or from the highest dilutions of the MPN series and were affiliated to four different phylogenetic groups. These isolates were characterized by physiological properties and by comparative 16S rDNA sequence analysis. Three isolates (TA1-AE1, TA1-A1 and TA12-21) were shown to be facultatively chemolithoautotrophic strains of Ancylobacter aquaticus. Three further isolates (Tv6-2b, Z2A-6A and Z4A-2A) were also facultatively chemolithoautotrophic and were affiliated with the Xanthobacter sp. group, probably representing new strains of X. flavus or X. tagetidis. Strain SZ-2111 was phylogenetically related to Bosea thiooxidans. However, the genus Bosea is described as obligately heterotrophic, whereas strain 5Z-2111 was able to grow autotrophically. The isolates 5Z-C1 and TBW3 were obligate chemolithoautotrophs and were closely affiliated with Thiobacillus thioparus. Our results showed that S-oxidizing bacteria were abundant and active in rice paddy soil and consisted of physiologically and phylogenetically diverse populations.

PMID:
9924825
DOI:
10.1016/S0723-2020(98)80069-6
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center