Send to

Choose Destination
Biochemistry. 1998 Dec 22;37(51):17905-14.

Intermediates in the reaction of fully reduced cytochrome c oxidase with dioxygen.

Author information

Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA.


The reduction of dioxygen to water by cytochrome c oxidase was monitored in the Soret region following photolysis of the fully reduced CO complex. Time-resolved optical absorption difference spectra collected between 373 and 521 nm were measured at delay times from 50 ns to 50 ms and analyzed using singular value decomposition and multiexponential fitting. Five processes were resolved with apparent lifetimes of 0.9 micros, 8 micros, 36 micros, 103 micros, and 1.2 ms. A mechanism is proposed and spectra of intermediates are extracted and compared to model spectra of the postulated intermediates. The model builds on an earlier mechanism that used data only from the visible region (Sucheta et al. (1997) Biochemistry 36, 554-565) and provides a more complete mechanism that fits results from both spectral regions. Intermediate 3, the ferrous-oxy complex (compound A) decays into a 607 nm species, generally referred to as P, which is converted to a 580 nm ferryl form (Fo) on a significantly faster time scale. The equilibrium constant between P and Fo is 1. We propose that the structure of P is a3(4+)=O CuB2+-OH- with an oxidizing equivalent residing on tyrosine 244, located close to the binuclear center. Upon conversion of P to Fo, cytochrome a donates an electron to the tyrosine radical, forming tyrosinate. Subsequently a proton is taken up by tyrosinate, forming F(I) [a3(4+)=O CuB2+-OH- a3+ CuA+]. This is followed by rapid electron transfer from CuA to cytochrome a to produce F(II) [a3(4+)=O CuB2+-OH- a2+ CuA2+].

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center