Send to

Choose Destination
Biochemistry. 1998 Dec 22;37(51):17818-27.

Contribution to Tl+, K+, and Na+ binding of Asn776, Ser775, Thr774, Thr772, and Tyr771 in cytoplasmic part of fifth transmembrane segment in alpha-subunit of renal Na,K-ATPase.

Author information

Biomembrane Research Center, August Krogh Institute, Copenhagen University, Denmark.


The sequence Y771TLTSNIPEIT781P in the fifth transmembrane segment of the alpha-subunit of Na,K-ATPase is unique among cation pump proteins. Here, in search of the molecular basis for Na,K specificity, alanine and conservative substitutions were directed to six oxygen-carrying residues in this segment. The contribution of the residues to cation binding was estimated from direct binding of Tl+ [Nielsen, et al. (1998) Biochemistry 37, 1961-1968], K+ displacement of ATP binding at equilibrium, and Na+-dependent phosphorylation from ATP in the presence of oligomycin. As an intrinsic control, substitution of Thr781 had no effect on Tl+(K+) or Na+ binding. There are several novel observations from this work. First, the carboxamide group of Asn776 is equally important for binding Tl+(K+) or Na+, whereas a shift of the position of the carboxamide of Asn776 (Asn776Gln) causes a large depression of Na+ binding without affecting the binding of Tl+(K+). Second, Thr774 is important for Na+ selectivity because removal of the hydroxyl group reduces the binding of Na+ with no effect on binding of Tl+(K+). Removal of the methyl groups of Thr774 or Thr772 reduces binding of both Tl+(K+) and Na+, whereas the hydroxyl group of Thr772 does not contribute to cation binding. Furthermore, the hydroxyl groups of Ser775 and Tyr771 are important for binding both Tl+(K+) and Na+. The data suggest that rotating or tilting of the cytoplasmic part of the fifth transmembrane segment may adapt distances between coordinating groups and contribute to the distinctive Na+/K+ selectivity of the pump.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center