Format

Send to

Choose Destination
J Food Prot. 1999 Jan;62(1):3-9.

Attachment of Escherichia coli O157:H7 to lettuce leaf surface and bacterial viability in response to chlorine treatment as demonstrated by using confocal scanning laser microscopy.

Author information

1
Center for Food Safety and Quality Enhancement, Department of Food Science and Technology, University of Georgia, Athens 30602-2106, USA.

Abstract

Confocal scanning laser microscopy was used to observe the location of Escherichia coli O157:H7 on and within lettuce leaves. Sections of leaves (ca. 0.5 by 0.5 cm) were inoculated by submersion in a suspension of E. coli O157:H7 (ca. 10(7) to 10(8) CFU/ml) overnight at 7 degrees C. Fluorescein isothiocyanate-labeled antibody was used to visualize the attached bacteria. E. coli O157:H7 was found attached to the surface, trichomes, stomata, and cut edges. Three-dimensional volume reconstruction of interior portions of leaves showed that E. coli O157:H7 was entrapped 20 to 100 microm below the surface in stomata and cut edges. Agar plate culturing and microscopic observation indicated that E. coli O157:H7 preferentially attached to cut edges, as opposed to the intact leaf surface. Dual staining with fluorescein isothiocyanate-labeled antibody and propidium iodide was used to determine viability of cells on artificially contaminated lettuce leaves after treatment with 20 mg/liter chlorine solution for 5 min. Many live cells were found in stomata and on cut edges following chlorine treatment. E. coli O157:H7 did not preferentially adhere to biofilm produced by Pseudomonas fluorescens on the leaf surface. In contrast to E. coli O157:H7, Pseudomonas adhered to and grew mainly on the intact leaf surface rather than on the cut edges.

PMID:
9921820
DOI:
10.4315/0362-028x-62.1.3
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center