Psychophysical measures of auditory nonlinearities as a function of frequency in individuals with normal hearing

J Acoust Soc Am. 1999 Jan;105(1):326-38. doi: 10.1121/1.424526.

Abstract

In order to gain a better understanding of how auditory nonlinear phenomena vary as a function of location along the cochlea, several psychophysical measures of nonlinearity were examined as a function of signal frequency. Six normal-hearing individuals completed three experiments, each designed to measure one aspect of nonlinear behavior: (1) the effects of level on frequency selectivity in simultaneous masking, measured using notched-noise maskers at spectrum levels of 30 and 50 dB, (2) two-tone suppression, measured using forward maskers at the signal frequency (fs) and suppressor tones above fs, and (3) growth of masking, measured using forward maskers below fs at a signal/masker frequency ratio of 1.44. Four signal frequencies (375, 750, 1500, and 3000 Hz) were tested to sample the nonlinear behavior at different locations along the basilar membrane, in order to test the hypothesis that the apical (low-frequency) region of the cochlea behaves more linearly than the basal (high-frequency) region. In general, all three measures revealed a progressive increase in nonlinear behavior as signal frequency increased, with little or no nonlinearity at the lowest frequency, consistent with the hypothesis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Auditory Perception / physiology*
  • Auditory Threshold
  • Hearing / physiology*
  • Humans
  • Perceptual Masking
  • Psychophysics*