Send to

Choose Destination
J Clin Endocrinol Metab. 1999 Jan;84(1):105-11.

Female reproductive aging is marked by decreased secretion of dimeric inhibin.

Author information

Reproductive Endocrine Sciences Center and National Center for Infertility Research, Department of Medicine, Massachusetts General Hospital, Boston 02114-2696, USA.


The increase in serum FSH that accompanies female reproductive aging occurs before changes in estradiol (E2). A decrease in negative feedback from inhibin A (a product of the dominant follicle and corpus luteum) and/or inhibin B (secreted by developing follicles) may explain the rise in FSH with age. To test the hypothesis that decreases in inhibin A or inhibin B occur at an age at which the first increase in follicular phase FSH is evident, daily blood samples were obtained across the menstrual cycle from younger (<35 yr; n = 23) and older (35-46 yr; n = 21) cycling women. These cross-sectional studies were complemented by longitudinal data in 3 women studied at a 10-yr interval. In the early follicular phase, mean inhibin B was lower in older cycling women (88 +/- 7 vs. 112 +/- 10 pg/mL; P < 0.05) and FSH was higher (13.0 +/- 0.5 vs. 11.2 +/- 0.7 IU/L in older vs. younger, respectively; P < 0.04). In the mid- and late follicular phases, inhibin B was also lower in the older women (117 +/- 9 vs. 146 +/- 10 and 85 +/- 8 vs. 117 +/- 11 pg/mL; P < 0.04), whereas E2 was higher (105 +/- 14 vs. 68 +/- 5 and 240 +/- 27 vs. 163 +/- 9 pg/mL; P < 0.02), and no differences in FSH were observed in the two groups at these times. In women studied longitudinally, FSH and inhibin B varied inversely in the follicular phase. In the early luteal phase, mean inhibin B was lower in the older group (64 +/- 6 vs. 94 +/- 12 pg/mL; P < 0.03), and FSH was higher (12.5 +/- 1.0 vs. 9.7 +/- 0.6 IU/L; P < 0.03). In the mid- and late luteal phases, inhibin B was also lower in older subjects (21 +/- 2 vs. 33 +/- 5 and 22 +/- 2 vs. 36 +/- 6 pg/mL; P < 0.02). No difference in inhibin A, E2, or progesterone was observed across the luteal phase, between the two groups. However, in all subjects studied longitudinally, increased age was associated with a decrease in inhibin A, inhibin B, and progesterone in the absence of changes in E2. Our conclusions were: 1) reproductive aging is accompanied by decreases in both inhibin B and inhibin A; 2) the decrease in inhibin B precedes the decrease in inhibin A and occurs in concert with an increase in E2, suggesting that inhibin B negative feedback is the most important factor controlling the earliest increase in FSH with aging; 3) these studies suggest that the decrease in inhibin B is the earliest marker of the decline in follicle number across reproductive aging.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center