Format

Send to

Choose Destination
J Biol Chem. 1999 Jan 29;274(5):3182-8.

Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function.

Author information

1
Second Department of Internal Medicine, Asahikawa Medical College, 4-5-3 Nishikagura, Asahikawa 078-8510, Japan.

Abstract

The glucocorticoid receptor (GR) is considered to belong to a class of transcription factors, the functions of which are exposed to redox regulation. We have recently demonstrated that thioredoxin (TRX), a cellular reducing catalyst, plays an important role in restoration of GR function in vivo under oxidative conditions. Although both the ligand binding domain and other domains of the GR have been suggested to be modulated by TRX, the molecular mechanism of the interaction is largely unknown. In the present study, we hypothesized that the DNA binding domain (DBD) of the GR, which is highly conserved among the nuclear receptors, is also responsible for communication with TRX in vivo. Mammalian two-hybrid assay and glutathione S-transferase pull-down assay revealed the direct association between TRX and the GR DBD. Moreover, analysis of subcellular localization of TRX and the chimeric protein harboring herpes simplex viral protein 16 transactivation domain and the GR DBD indicated that the interaction might take place in the nucleus under oxidative conditions. Together these observations indicate that TRX, via a direct association with the conserved DBD motif, may represent a key mediator operating in interplay between cellular redox signaling and nuclear receptor-mediated signal transduction.

PMID:
9915858
DOI:
10.1074/jbc.274.5.3182
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center