Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Motil Cytoskeleton. 1999;42(1):48-59.

Regional regulation of microtubule dynamics in polarized, motile cells.

Author information

1
Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst 01003, USA. patw@bio.umass.edu

Abstract

Microtubules are known to be required for locomotion of mammalian cells, and recent experiments demonstrate that suppression of microtubule dynamic turnover reduces the rate of cell motility and induces wandering of growth cones [Liao et al., 1995: J Cell Sci. 108:3473-3483; Tanaka et al., 1995: J Cell Biol. 128:139-155]. To determine how microtubule dynamic instability behavior contributes to directed cell locomotion, the behavior of individual microtubules has been directly observed and quantified at leading and lateral edges of hepatocyte growth factor-treated motile cells. Microtubules extended into newly formed protrusions at the leading edge; these "pioneer" microtubules [Waterman-Storer and Salmon, 1997: J Cell Biol. 139:417-434] showed persistent growth when compared with microtubules in non-leading, lateral edges. The percentage of total observation time spent in the growth phase was 68.2% at the leading edge compared with 32.0% in non-leading edges, and net microtubule elongation was observed in lamellipodia at the leading edge. The frequency of catastrophe transitions was threefold greater and the average number of transitions/microtubule/min was twofold greater in non-leading edges, as compared with the leading edge. These observations demonstrate that pioneer microtubules that enter newly formed lamellipodia at the leading edge of motile cells are characterized by persistent growth excursions, and directly demonstrate that the frequency of catastrophe transitions can be regionally regulated in polarized motile cells. The data indicate that region specific differences in the organization and dynamics of actin filaments may regulate microtubule dynamic instability behavior in vivo.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center