Format

Send to

Choose Destination
J Neurophysiol. 1999 Jan;81(1):288-98.

Modulation of transmitter release by action potential duration at the hippocampal CA3-CA1 synapse.

Author information

1
Division of Neuroscience, Baylor College of Medicine, Houston, Texas.

Abstract

Presynaptic Ca2+ influx through voltage-dependent Ca2+ channels triggers neurotransmitter release. Action potential duration plays a determinant role in the dynamics of presynaptic Ca2+ influx. In this study, the presynaptic Ca2+ influx was optically measured with a low-affinity Ca2+ indicator (Furaptra). The effect of action potential duration on Ca2+ influx and transmitter release was investigated. The K+ channel blocker 4-aminopyridine (4-AP) was applied to broaden the action potential and thereby increase presynaptic Ca2+ influx. This increase of Ca2+ influx appeared to be much less effective in enhancing transmitter release than raising the extracellular Ca2+ concentration. 4-AP did not change the Ca2+ dependence of transmitter release but instead shifted the synaptic transmission curve toward larger total Ca2+ influx. These results suggest that changing the duration of Ca2+ influx is not equivalent to changing its amplitude in locally building up an effective Ca2+ concentration near the Ca2+ sensor of the release machinery. Furthermore, in the presence of 4-AP, the N-type Ca2+ channel blocker omegaCgTx GVIA was much less effective in blocking transmitter release. This phenomenon was not simply due to a saturation of the release machinery by the increased overall Ca2+ influx because a similar reduction of Ca2+ influx by application of the nonspecific Ca2+ channel blocker Cd2+ resulted in much more inhibition of transmitter release. Rather, the different potencies of omega-CgTx GVIA and Cd2+ in inhibiting transmitter release suggest that the Ca2+ sensor is possibly located at a distance from a cluster of Ca2+ channels such that it is sensitive to the location of Ca2+ channels within the cluster.

PMID:
9914289
DOI:
10.1152/jn.1999.81.1.288
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center