Send to

Choose Destination
See comment in PubMed Commons below
J Invest Dermatol. 1999 Jan;112(1):25-31.

Thymidine dinucleotide mimics the effect of solar simulated irradiation on p53 and p53-regulated proteins.

Author information

Department of Dermatology, Boston University School of Medicine, Massachusetts 02118, USA.


The tumor suppressor protein p53 participates in DNA repair and cell cycle regulation in response to injuries like ultraviolet (UV) irradiation. We have previously reported that the thymidine dinucleotide (pTpT), a common target for DNA photoproduct formation by UV light, mimics many effects of UV irradiation in cultured skin-derived cells, at least in part through the activation of p53. In this report we compare the effects of solar-simulated irradiation and pTpT on p53 and p53-regulated proteins involved in cellular growth arrest and DNA repair in cultured human dermal fibroblasts. We find that, like UV irradiation, pTpT increases the levels of p53, p21, and proliferating-cell nuclear antigen. The magnitude and time course of the inductions are UV dose dependent and consistent with known regulatory interactions among these nuclear proteins. These data confirm and expand previous studies of UV effects on nuclear proteins involved in cell cycle regulation and DNA repair. Our observations suggest that such protective effects can also be induced by pTpT in the absence of initial DNA damage, rendering cells more capable of responding to subsequent DNA damage.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center