Send to

Choose Destination
J Cell Sci. 1999 Feb;112 ( Pt 3):339-47.

Antagonistic effects of NES and NLS motifs determine S. cerevisiae Rna1p subcellular distribution.

Author information

Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.


Nucleus/cytosol exchange requires a GTPase, Ran. In yeast Rna1p is the GTPase activating protein for Ran (RanGAP) and Prp20p is the Ran GDP/GTP exchange factor (GEF). RanGAP is primarily cytosolic and GEF is nuclear. Their subcellular distributions led to the prediction that Ran-GTP hydrolysis takes place solely in the cytosol and GDP/GTP exchange solely in the nucleus. Current models propose that the Ran-GTP/Ran-GDP gradient across the nuclear membrane determines the direction of exchange. We provide three lines of evidence that Rna1p enters and leaves the nuclear interior. (1) Rna1p possesses leucine-rich nuclear export sequences (NES) that are able to relocate a passenger karyophilic protein to the cytosol; alterations of consensus residues re-establish nuclear location. (2) Rna1p possesses other sequences that function as a novel nuclear localization sequence able to deliver a passenger cytosolic protein to the nucleus. (3) Endogenous Rna1p location is dependent upon Xpo1p/Crm1p, the yeast exportin for leucine-rich NES-containing proteins. The data support the hypothesis that Rna1p exists on both sides of the nuclear membrane, perhaps regulating the Ran-GTP/Ran-GDP gradient, participating in a complete RanGTPase nuclear cycle or serving a novel function.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center