Send to

Choose Destination
Biol Pharm Bull. 1998 Dec;21(12):1282-5.

Biochemical characterization of recombinant HIV-1 reverse transcriptase (rRT) as a glycyrrhizin-binding protein and the CK-II-mediated stimulation of rRT activity potently inhibited by glycyrrhetinic acid derivative.

Author information

Laboratory of Genetical Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara, Japan.


By means of successive Mono Q and glycyrrhizin (GL)-affinity column chromatography (HPLC), recombinant HIV-1 RT (rRT) was purified to apparent homogeneity from the Superdex 200 pg fraction of the crude protein extract of E. coli BL21 transfected with pET 21a(+)/HIV-1 PR-RT. It was found that (i) rRT functioned as an effective phosphate acceptor for recombinant human casein kinase II (rhCK-II) in vitro; (ii) this phosphorylation was inhibited by anti-HIV-1 substances [a glycyrrhetinic acid derivative (oGA) and quercetin] and a high dose (100 microM) of GL; (iii) RNA-dependent DNA polymerase (RDDP) activity was stimulated about 2.5-fold after full phosphorylation of rRT by rhCK-II; and (iv) oGA as well as NCS-chromophore effectively prevented the CK-II-mediated stimulation of RDDP activity. These results suggest that the anti-HIV-1 effect of oGA may be involved in the selective inhibition of the CK-II-mediated stimulation of HIV-1 RT at the cellular level.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center