Send to

Choose Destination
Plant J. 1998 Nov;16(3):345-53.

Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana.

Author information

Chinese University of Hong Kong, Department of Biology, Shantin, N.T.


In plants, the amino acid asparagine serves as an important nitrogen transport compound whose levels are dramatically regulated by light in many plant species, including Arabidopsis thaliana. To elucidate the mechanisms regulating the flux of assimilated nitrogen into asparagine, we examined the regulation of the gene family for asparagine synthetase in Arabidopsis. In addition to the previously identified ASN1 gene, we identified a novel class of asparagine synthetase genes in Arabidopsis (ASN2 and ASN3) by functional complementation of a yeast asparagine auxotroph. The proteins encoded by the ASN2/3 cDNAs contain a Pur-F type glutamine-binding triad suggesting that they, like ASN1, encode glutamine-dependent asparagine synthetase isoenzymes. However, the ASN2/3 isoenzymes form a novel dendritic group with monocot AS genes which is distinct from all other dicot AS genes including Arabidopsis ASN1. In addition to these distinctions in sequence, the ASN1 and ASN2 genes are reciprocally regulated by light and metabolites. Time-course experiments reveal that light induces levels of ASN2 mRNA while it represses levels of ASN1 mRNA in a kinetically reciprocal fashion. Moreover, the levels of ASN2 and ASN1 mRNA are also reciprocally regulated by carbon and nitrogen metabolites. The distinct regulation of ASN1 and ASN2 genes combined with their distinct encoded isoenzymes suggest that they may play different roles in nitrogen metabolism, as discussed in this paper.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center