Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1999 Jan;119(1):179-90.

Ribulose-1,5-bisphosphate Carboxylase/Oxygenase content, assimilatory charge, and mesophyll conductance in leaves

Author information

Tartu Ulikooli Molekulaar-ja Rakubioloogia Instituut, Riia tn 23, Tartu, 51010, Estonia.


The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 &mgr;mol active sites m-2. Mesophyll conductance (&mgr;) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of &mgr; on Et saturated at Et = 30 &mgr;mol active sites m-2 and &mgr; = 11 mm s-1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a &mgr; of only 6 to 8 mm s-1. &mgr; was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 &mgr;M-1 s-1. Our data show that the saturation of the relationship between Et and &mgr; is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center