Send to

Choose Destination
See comment in PubMed Commons below
J Am Soc Mass Spectrom. 1998 Jul;9(7):716-23.

Gas-phase reactivity and molecular modeling studies on triply protonated dodecapeptides that contain four basic residues.

Author information

Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA.


Gas-phase deprotonation and hydrogen/deuterium (H/D) exchange reactions for ions from three model dodecapeptides were studied by Fourier transform ion cyclotron resonance mass spectrometry. Molecular dynamics calculations were employed to provide information on conformations and Coulomb energies. The peptides, (KGG)4, (K2G4)2, and K4G8, each contain four high basicity lysine residues and eight low basicity glycine residues; however, in the present work only three lysine residues were protonated. Proton transfer reactions with a series of reference amines revealed apparent gas-phase acidities in a narrow range of 207.3-209.6 kcal/mol, with deprotonation efficiencies following the order [K4G8 + 3H]3+ > [(KGG)4 + 3H]3+ > [(K2G4)2 + 3H]3+. The three ions also react similarly with d4-methanol: each exchanged a maximum of 23-25 of their 25 labile hydrogens, with the first 15-17 exchanges occurring at rate constants of (1.6-2.6) x 10(-11) cm3 molecule-1 s-1. The experimental results agree with molecular modeling findings of similar conformations and Coulomb energies for the three peptide ions. The [M + 3H]3+ data are compared to data obtained previously in our laboratory for the "fully" protonated [M + 4H]4+ (Zhang, X.; Ewing, N. P.; Cassady, C. J. Int. J. Mass Spectrom. Ion Phys., in press). For (KGG)4 and (K2G4)2, there is a marked difference in H/D exchange reactivity between 3+ ions and 4+ ions. The 4+ ions, which have diffuse conformations, slowly exchange only 14 hydrogens, whereas their more compact 3+ counterparts exchange 23-25 hydrogens at a 5-times greater rate. In contrast, the 3+ and 4+ ions of K4G8 have similar compact conformations and exchange reactivity. The results indicate that a multiply hydrogen-bonded intermediate between the deuterating reagent and the peptide ion is necessary for facile H/D exchange. The slower, incomplete H/D exchange of [(KGG)4 + 4H]4+ and [(K2G4)2 + 4H]4+ is attributed to the inability of their protonated lysine n-butylamino groups (which extend away from the peptide backbone) to form this intermediate.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for Elsevier Science
    Loading ...
    Support Center