Two groups of TH-like immunoreactive neurons in the frog (Rana pipiens) retina

Brain Res. 1999 Jan 16;816(1):149-57. doi: 10.1016/s0006-8993(98)01145-7.

Abstract

The morphology and distribution of TH-like immunoreactive (TH-IR) cells in the retina of Rana pipiens were studied in retinal whole mounts and in radial and horizontal sections. A large majority (96%) of the immunoreactive cells were found in the inner nuclear layer while a few cells were found in the ganglion cell layer. All TH-IR cells had round to oval somata with average diameter of 10 microm. The 2-4 primary processes of these cells distributed extensively to sublamina 1 of the inner plexiform layer (IPL) and sparsely to sublamina 5. Two groups of TH-IR cells were distinguished: one, designated thin cells, had only thin (<2 microm diameter) primary processes; the second, designated thick cells, had one or more primary processes with diameter(s) exceeding 2 microm for a distance of 5 microm or more from the soma. The thin cells did not significantly differ from the thick cells in soma diameter, number of primary processes, horizontal spread of processes or vertical lamination of processes. Nearest neighbor analyses of the two types revealed that the population of TH-IR cells (thick and thin together) have an orderly distribution while the thick cells alone are more randomly distributed, indicating that the thick cells do not comprise a functional population. The total number of TH-IR cells varied between retinas; the variability was due principally to variation of thin cell density. It is hypothesized that the thick cells are a subpopulation of the TH-IR cells which are in a particular physiological state at the time of fixation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Count
  • Cell Size
  • Female
  • Immunohistochemistry
  • Male
  • Neurons / cytology
  • Neurons / enzymology*
  • Rana pipiens
  • Retina / cytology
  • Retina / enzymology*
  • Tyrosine 3-Monooxygenase / analysis*

Substances

  • Tyrosine 3-Monooxygenase