Format

Send to

Choose Destination
J Mol Biol. 1999 Jan 8;285(1):149-61.

Novel organization and sequences of five genes encoding all six enzymes for de novo pyrimidine biosynthesis in Trypanosoma cruzi.

Author information

1
Department of Parasitology, Juntendo University School of Medicine, Hongo 2-1-1, Tokyo, Bunkyo-ku, 113-8421, Japan.

Abstract

A 25 kb segment of genomic DNA from Trypanosoma cruzi, the causative agent of Chagas' disease, was sequenced. It contains five genes, pyr1, pyr2, pyr3, pyr4, and pyr6-5, encoding all six enzymes involved in de novo pyrimidine biosynthesis, glutamine-dependent carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, dihydroorotase, dihydroorotate dehydrogenase, and orotidine-5'-phosphate decarboxylase linked with orotate phosphoribosyltransferase, respectively. The pyr genes constitute a polycistronic transcription unit on an 800 kb chromosomal DNA in the order of pyr1, pyr3, pyr6-5, pyr2, and pyr4 from the 5' terminus, with intervening sequences of 2.2, 0.4, 8.1, and 0.8 kb. The amino acid sequences deduced from the trypanosomatid pyr genes, except for pyr6, showed closer similarities to mammalian and yeast sequences, and less similarity to archaeal and bacterial sequences. The last two enzymes encoded by a single gene, pyr6-5, are covalently linked in the order opposite to mammalian pyr5-6, and possess a putative glycosomal targeting signal tripeptide, serine-lysine-leucine, at the C terminus. The calculated isoelectric points of 9.3 and 9.9 are also diagnostic of the glycosomal localization of these enzymes. We conclude that the T. cruzi pyr gene organization represents an early progenitor in de novo pyrimidine biosynthesis in eukaryotic lineage, and that the independent pyr genes may have evolved before the gene fusion events that resulted in the three mammalian-type genes, pyr1-3-2, pyr4, and pyr5-6, for UMP synthesis. Peculiarities in the trypanosomatid pyr6-5 gene product are discussed.

PMID:
9878395
DOI:
10.1006/jmbi.1998.2293
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center