Format

Send to

Choose Destination
Cytokine. 1998 Nov;10(11):841-50.

Regulation of IL-17, IFN-gamma and IL-10 in human CD8(+) T cells by cyclic AMP-dependent signal transduction pathway.

Author information

1
Laboratoire d'Immunologie, Faculté de Pharmacie de Reims, France.

Abstract

In the present study, the expression of interleukin 17 (IL-17) by human CD8(+) T lymphocytes and its regulation following PKA activation was determined and compared with that of interferon gamma (IFN-gamma) and IL-10. IL-17 mRNA was highly expressed in human CD8(+) T lymphocytes at least at the same level than in CD4(+) T cells that were isolated from peripheral blood mononuclear cells (PBMC). Expression of IL-17 mRNA in CD8(+) T cell was induced by prior activation of PBMC for 18 h with Ca2+ ionophore and phorbol myristate acetate (PMA). Furthermore, our results clearly showed that CD8(+) T cells are sensitive to elevation of cAMP and PKA activation pathway. Data demonstrated a significant inhibition of IL-17 as well as of IFN-gamma mRNA expression in CD8(+) T cells isolated from activated PBMC cultured in the presence of either dibutyryl cAMP (db-cAMP) or PGE2. In contrast, IL-10 mRNA expression was strongly enhanced in the same experimental conditions. The differential expression of IL-10 and IFN-gamma production in CD8(+) T cells was also observed at the protein level as it was measured by a double immunofluorescence technique and flow cytometry analysis. Taken together, these results provide evidence that human CD8(+) T cells are also the source of massive expression of IL-17, and that PKA plays a prominent role in the switch of CD8(+) T cells to a Th2 like profile and an inhibition of IL-17 expression, thus suggesting that the activation of cAMP signal transduction pathway may have consequences for the relative role of CD8(+) T cells in the immune and inflammatory process.

PMID:
9878122
DOI:
10.1006/cyto.1998.0375
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center