Send to

Choose Destination
See comment in PubMed Commons below
Development. 1999 Feb;126(3):555-66.

Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina.

Author information

  • 1Program in Neuroscience, Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.


The seven major classes of cells of the vertebrate neural retina are generated from a pool of multipotent progenitor cells. Recent studies suggest a model of retinal development in which both the progenitor cells and the environment change over time (Cepko, C. L., Austin, C. P., Yang, X., Alexiades, M. and Ezzeddine, D. (1996). Proc. Natl. Acad. Sci. USA 93, 589-595). We have utilized a reaggregate culture system to test this model. A labeled population of progenitors from the embryonic rat retina were cultured with an excess of postnatal retinal cells and then assayed for their cell fate choices. We found that the postnatal environment had at least two signals that affected the embryonic cells' choice of fate; one signal inhibited the production of amacrine cells and a second affected the production of cone cells. No increase in cell types generated postnatally was observed. The source of the inhibitor of the amacrine cell fate appeared to be previously generated amacrine cells, suggesting that amacrine cell number is controlled by feedback inhibition. The progenitor cell lost its ability to be inhibited for production of an amacrine cell as it entered M phase of the cell cycle. We suggest that postmitotic cells influence progenitor cell fate decisions, but that they do so in a manner restricted by the intrinsic biases of progenitor cells.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center