Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1999 Jan;76(1 Pt 1):509-16.

Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy.

Author information

  • 1Faculty for Physics, University of Konstanz, D-78457 Konstanz, Germany.


We have developed a new method for observing cell/substrate contacts of living cells in culture based on the optical excitation of surface plasmons. Surface plasmons are quanta of an electromagnetic wave that travel along the interface between a metal and a dielectric layer. The evanescent field associated with this excitation decays exponentially perpendicular to the interface, on the order of some hundreds of nanometers. Cells were cultured on an aluminum-coated glass prism and illuminated from below with a laser beam. Because the cells interfere with the evanescent field, the intensity of the reflected light, which is projected onto a camera chip, correlates with the cell/substrate distance. Contacts between the cell membrane and the substrate can thus be visualized at high contrast with a vertical resolution in the nanometer range. The lateral resolution along the propagation direction of surface plasmons is given by their lateral momentum, whereas perpendicular to it, the resolution is determined by the optical diffraction limit. For quantitative analysis of cell/substrate distances, cells were imaged at various angles of incidence to obtain locally resolved resonance curves. By comparing our experimental data with theoretical surface plasmon curves we obtained a cell/substrate distance of 160 +/- 10 nm for most parts of the cells. Peripheral lamellipodia, in contrast, formed contacts with a cell substrate/distance of 25 +/- 10 nm.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center