Format

Send to

Choose Destination
FEMS Microbiol Rev. 1998 Oct;22(4):255-75.

Genome evolution within the alpha Proteobacteria: why do some bacteria not possess plasmids and others exhibit more than one different chromosome?

Author information

1
Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica. emoreno@ns.medvet.una.ac.cr

Abstract

Animal intracellular Proteobacteria of the alpha subclass without plasmids and containing one or more chromosomes are phylogenetically entwined with opportunistic, plant-associated, chemoautotrophic and photosynthetic alpha Proteobacteria possessing one or more chromosomes and plasmids. Local variations in open environments, such as soil, water, manure, gut systems and the external surfaces of plants and animals, may have selected alpha Proteobacteria with extensive metabolic alternatives, broad genetic diversity, and more flexible and larger genomes with ability for horizontal gene flux. On the contrary, the constant and isolated animal cellular milieu selected heterotrophic alpha Proteobacteria with smaller genomes without plasmids and reduced genetic diversity as compared to their plant-associated and phototrophic relatives. The characteristics and genome sizes in the extant species suggest that a second chromosome could have evolved from megaplasmids which acquired housekeeping genes. Consequently, the genomes of the animal cell-associated Proteobacteria evolved through reductions of the larger genomes of chemoautotrophic ancestors and became rich in adenosine and thymidine, as compared to the genomes of their ancestors. Genome organisation and phylogenetic ancestor-descendent relationships between extant bacteria of closely related genera and within the same monophyletic genus and species suggest that some strains have undergone transition from two chromosomes to a single replicon. It is proposed that as long as the essential information is correctly expressed, the presence of one or more chromosomes within the same genus or species is the result of contingency. Genetic drift in clonal bacteria, such as animal cell-associated alpha Proteobacteria, would depend almost exclusively on mutation and internal genetic rearrangement processes. Alternatively, genomic variations in reticulate bacteria, such as many intestinal and plant cell-associated Proteobacteria, will depend not only on these processes, but also on their genetic interactions with other bacterial strains. Common pathogenic domains necessary for the invasion and survival in association with cells have been preserved in the chromosomes of the animal and plant-associated alpha Proteobacteria. These pathogenic domains have been maintained by vertical inherence, extensively ameliorated to match the chromosome G + C content and evolved within chromosomes of alpha Proteobacteria.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for Wiley
Loading ...
Support Center