Format

Send to

Choose Destination
Brain Behav Evol. 1999;53(1):20-8.

Rattlesnake hunting behavior: correlations between plasticity of predatory performance and neuroanatomy.

Author information

1
Department of Zoologie, Washington State University, Pullman, Wash. 99164-4236, USA. kkardong@wsu.edu

Abstract

Rattlesnakes may shift between visual (eyes) and infrared (facial pits) stimuli without significant loss of predatory performance during an envenomating strike. The relative equivalency of these proximate stimuli is correlated with the organization of the associated neural pathways in the central nervous system. Visual and infrared information, although gathered by different sensory organs, converges within the optic tectum in an orderly spatiotopical representation where bimodal neurons respond to both stimuli. In turn, the tectum sends efferent pathways directly to premotor areas (brainstem) and indirectly to motor areas (spinal cord) where axial muscles involved in the strike might be activated. On the other hand, rattlesnakes do not maintain a high level of equivalent predatory performance when switching between chemosensory stimuli i.e., olfactory, and vomeronasal information. Deprived of vomeronasal input, strikes drop by about half, and poststrike trailing is lost entirely. Surprisingly, compensation by switching to information delivered via an intact olfactory input does not occur, despite the convergence of chemosensory information within the central nervous system. Finally, the launch of a targeted, envenomating strike involves both these modalities: radiation reception (visual, infrared) and chemoreception (olfactory, vomeronasal). However, in the absence of chemosensory information, the radiation modalities do not completely compensate, nor does the animal maintain a high level of predatory performance. Similarly, in the absence of radiation information, the chemosensory modalities do not completely compensate, nor does the animal maintain a high level of predatory performance. The absence of compensation in this multimodal system is also correlated with an absence of convergence of radiation and chemical information, at least at the level of first and second-order neurons, in the central nervous system.

PMID:
9858802
DOI:
10.1159/000006579
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for S. Karger AG, Basel, Switzerland
Loading ...
Support Center