Format

Send to

Choose Destination
See comment in PubMed Commons below
Mech Dev. 1998 Nov;78(1-2):63-79.

Requirement for EphA receptor signaling in the segregation of Xenopus third and fourth arch neural crest cells.

Author information

1
Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093, Zürich, Switzerland.

Abstract

We describe here the isolation of a full-length cDNA encoding a Xenopus orthologue of the mammalian EphA2 receptor tyrosine kinase and investigate its role in cranial neural crest migration. We show that the primary sites of Xenopus EphA2 expression are rhombomere 4 of the developing hindbrain, migratory cranial neural crest cells and mesoderm of the visceral arches. To interfere with EphA2 and related receptors during cranial neural crest migration, we took a dominant negative approach. Overexpression of kinase-deficient EphA2 receptor variants led to abnormal migration of cranial neural crest cells. Neural crest cells of the third arch were found to mismigrate posteriorly, resulting in the failure of third and fourth arch neural crest to separate into distinct streams. These defects could be rescued by expression of full-length EphA2 receptors. A comparison of the expression domains of EphA2-binding proteins mapped by receptor affinity probe (RAP) in situ staining with those for EphA2 receptors revealed co-expression of ligands and receptors in the visceral arch mesenchyme. Taken together, these results suggest that EphA receptors may mediate attractive or adhesive signals during migration of cranial neural crest cells.

PMID:
9858686
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center