Format

Send to

Choose Destination
J Neurosci Res. 1998 Dec 15;54(6):721-33.

Evidence for involvement of Bax and p53, but not caspases, in radiation-induced cell death of cultured postnatal hippocampal neurons.

Author information

1
Department of Neurological Surgery, University of Washington School of Medicine, Seattle 98195-6470, USA.

Abstract

Bax (a death-promoting member of the bcl-2 gene family), the tumor suppressor gene product p53, and the ICE/ced-3-related proteases (caspases) have all been implicated in programmed cell death in a wide variety of cell types. However, their roles in radiation-induced neuronal cell death are poorly understood. In order to further elucidate the molecular mechanisms underlying radiation-induced neuronal cell death, we have examined the ability of ionizing radiation to induce cell death in primary cultured hippocampal neurons obtained from wild-type, p53-deficient and Bax-deficient newborn mice. Survival in neuronal cultures derived from wild-type mice decreased in a dose-dependent manner 24 hr after a single 10 Gy to 30 Gy dose of ionizing radiation. In contrast, neuronal survival in irradiated cultures derived from p53-deficient or Bax-deficient mice was equivalent to that observed in control, nonirradiated cultures. Western blot analyses indicated that neuronal p53 protein levels increased after irradiation in wild-type cells. However, Bax protein levels did not change, indicating that other mechanisms exist for regulating Bax activity. Adenovirus-mediated overexpression of p53 also caused neuronal cell death without increasing Bax protein levels. Irradiation resulted in a significant induction in caspase activity, as measured by increased cleavage of fluorogenic caspase substrates. However, specific inhibitors of caspase activity (zVAD-fmk, zDEVD-fmk and BAF) failed to protect postnatal hippocampal neurons from radiation-induced cell death. Staurosporine (a potent inducer of apoptosis in many cell types) effectively induced neuronal cell death in wild-type, p53-deficient and Bax-deficient hippocampal neurons, indicating that all were competent to undergo programmed cell death. These results demonstrate that both p53 and Bax are necessary for radiation-induced cell death in postnatal cultured hippocampal neurons. The fact that cell death occurred despite caspase inhibition suggests that radiation-induced neuronal cell death may occur in a caspase-independent manner.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center