Send to

Choose Destination
Pediatr Res. 1998 Dec;44(6):843-9.

Pulmonary hemodynamics and plasma endothelin-1 during hypoxemia and reoxygenation with room air or 100% oxygen in a piglet model.

Author information

Department of Pediatric Research, Institute for Surgical Research, The National Hospital, Oslo, Norway.


The immediate effect on the pulmonary circulation of reoxygenation with either room air or 100% O2 was studied in newborn piglets. Hypoxemia was induced by ventilation with 8% O2 until base excess was <-20 mmol/L or mean arterial blood pressure was <20 mm Hg. Reoxygenation was performed with either room air (n = 9) or 100% O2 (n = 9). Mean pulmonary artery pressure increased during hypoxemia (p = 0.012). After 5 min of reoxygenation, pulmonary artery pressure increased further from 24 +/- 2 mm Hg at the end of hypoxemia to 35 +/- 3 mm Hg (p = 0.0077 versus baseline) in the room air group and from 27 +/- 3 mm Hg at the end of hypoxemia to 30 +/- 2 mm Hg (p = 0.011 versus baseline) in the O2 group (NS between groups). Pulmonary vascular resistance index increased (p = 0.0005) during hypoxemia. During early reoxygenation pulmonary vascular resistance index decreased rapidly to values comparable to baseline within 5 min of reoxygenation in both groups (NS between groups). Plasma endothelin-1 (ET-1) decreased during hypoxemia from 1.5 +/- 0.1 ng/L at baseline to 1.2 +/- 0.1 ng/L at the end of hypoxemia (p = 0.003). After 30 min of reoxygenation plasma ET-1 increased to 1.8 +/- 0.3 and 1.5 +/- 0.2 ng/L in the room air and O2 groups, respectively (p = 0.0077 in each group versus end hypoxemia; NS between groups). We conclude that hypoxemic pulmonary hypertension and plasma ET-1 normalizes as quickly when reoxygenation is performed with room air as with 100% O2 in this hypoxia model with newborn piglets.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center