Sialylated N-glycans in adult rat brain tissue--a widespread distribution of disialylated antennae in complex and hybrid structures

Eur J Biochem. 1998 Nov 15;258(1):243-70. doi: 10.1046/j.1432-1327.1998.2580243.x.

Abstract

This paper extends our earlier work on the analysis of neutral N-glycans from adult rat brain to glycans carrying NeuAc residues as their sole charged groups. These structures comprised at least 40% of the total (acidic and neutral) N-glycan pool. Compounds were identified by a combination of endoglycosidase and exoglycosidase digestions, anion-exchange chromatography, normal and reverse-phase high-performance liquid chromatography, matrix-assisted laser desorption/ionisation-mass spectrometry and combined gas chromatography/mass spectrometry. Mono-, di- and trisialylated components, together with components substituted with four (or more) NeuAc residues, showed abundances of approximately 12, 10, 7 and 7%, respectively, relative to the total N-glycan pool. In addition, neuraminidase digestion resulted in the neutralisation of a fraction of highly charged species, possibly indicating the presence of N-glycans substituted with short chains of polysialic acid. Sialylated bi-, tri- [mainly the (2,4)-branched isomer], tetraantennary complex, polylactosamine and hybrid structures were detected. Typically, for 'brain-type' N-glycosylation, these sialylated structures were variously modified by the presence of core alpha1-6-linked and outer-arm alpha1-3-linked fucose residues and by a bisecting GlcNAc. Structural groups such as sialyl Lewis(x) and NeuAc alpha2-3 substituted Galbeta1-4GlcNAc antennae were common. In contrast to the neutral glycans, however, a widespread distribution of terminal beta1-3-linked galactose residues was observed. The presence of beta1-3-linked galactose allowed for a high degree of sialylation as afforded by the presence of the NeuAc alpha2-3Galbeta1-3(NeuAc alpha2-6)GlcNAc structural group. This revealed a number of novel structures including the presence of tetraantennary N-glycans with more than one beta1-3galactose residue and (2,4)-branched triantennary oligosaccharides containing three such residues. Disialylated hybrid glycans containing beta1-3-linked galactose and 'polylactosamine' N-glycans with one to three terminal beta1-3galactose residues were additional novel features. The N-glycans modified by polysialylation lacked outer-arm fucose and bisecting GlcNAc residues but all contained one or more terminal beta1-3-linked galactose residues. These may be representative, therefore, of the polysialylated N-glycans expressed mainly on neural cell-adhesion molecules and known to be present in adult rat brain. The diversity of presentation of terminal sialylated groups in rat brain implies potential specificity for possible charge or lectin-mediated interactions. The distinguishing sets of sialylated structures described here are indicative of differences in the natural glycosylation processing pathways in different cell types within the central nervous system, a specificity that may be further magnified on the individual glycoproteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / metabolism*
  • Carbohydrate Conformation
  • Carbohydrate Sequence
  • Chromatography, High Pressure Liquid
  • Chromatography, Ion Exchange
  • Fucose / metabolism
  • Galactose / metabolism
  • Molecular Sequence Data
  • N-Acetylneuraminic Acid / metabolism*
  • Polysaccharides / metabolism*
  • Rats
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

Substances

  • Polysaccharides
  • Fucose
  • N-Acetylneuraminic Acid
  • Galactose