Format

Send to

Choose Destination
Am J Physiol. 1998 Jun;274(6 Pt 2):H1955-61.

Increased superoxide anion generation and altered vasoreactivity in rabbits on low-potassium diet.

Author information

1
Department of Medicine, University of Florida and Veterans Affairs Medical Center, Gainesville, Florida 32610, USA.

Abstract

Potassium reduces blood pressure in populations at high risk of developing hypertension, which suggests that potassium depletion may increase vascular resistance. This study was designed to examine the effect of potassium depletion on the L-arginine-nitric oxide pathway in arterial tissues. New Zealand White rabbits were fed either a control diet, containing a normal amount of potassium, or a low-potassium diet for 1-3 wk. As expected, the low-potassium diet resulted in reduced serum and urinary potassium levels. Carotid arteries were excised, and their contractile and relaxant responses were determined in vitro. Carotid arterial ring contractile response to norepinephrine was enhanced, and relaxation in response to the endothelium-dependent vasodilators acetylcholine and calcium ionophore A-23187 was attenuated, in rabbits fed low-potassium diet (all P < 0.01 compared with responses in rabbits fed control diet). The vasomotor responses were similarly altered in rabbits fed low-potassium diet for 1 or 3 wk. Both the enhanced contraction and attenuated relaxation were abolished by treatment of arterial rings with superoxide dismutase but not by treatment with L-arginine or indomethacin. Carotid artery rings from rabbits fed the low-potassium diet showed approximately 100% greater superoxide anion formation than those from rabbits fed control diet (P < 0.01), whereas plasma and urinary nitrite levels were similar in both groups of rabbits. These observations indicate that low-potassium diet enhances the sensitivity of the carotid artery to vasoconstrictor stimuli and reduces the sensitivity to endothelium-dependent stimuli. Attenuation of endothelium-dependent relaxation appears to be secondary to increased free radical generation, which may degrade nitric oxide. Altered vasoreactivity may underlie the genesis of hypertension in populations consuming diets low in potassium.

PMID:
9841522
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center