Format

Send to

Choose Destination
Med Microbiol Immunol. 1998 Oct;187(2):71-8.

Clearance of Chlamydia trachomatis-induced polyserositis in SCID mice requires both CD4+ and CD8+ cells.

Author information

1
Department of Medical Microbiology and Hygiene, University of Ulm, Germany.

Abstract

To characterize the role of specific lymphocyte subsets in Chlamydia trachomatis infection, we established a murine model using the mouse pneumonitis agent (MoPn) of C. trachomatis and C.B-17 scid/scid (SCID) mice which lack functional B and T cells. After intraperitoneal inoculation with the bacteria, SCID mice developed polyserositis with pleuritis, pericarditis, and perihepatitis. Within 8 weeks post infection, SCID mice succumbed to the disease, whereas immunocompetent congenic C.B-17+/+ mice resolved the infection. Adoptive transfer of immune spleen cells into MoPn-infected SCID mice resulted in a complete elimination of the agent and prevention of polyserositis as measured by quantitative chlamydial culture, direct immunofluorescence and histopathological analysis. Selective reconstitution of MoPn-infected SCID mice with immune B lymphocytes, CD4+ T cells or CD8+ T cells alone did not influence the chlamydial load in the lung and liver of infected SCID animals, resulting in a polyserositis as observed in untreated MoPn-infected SCID mice. However, co-transfer of both CD4+ T cells and CD8+ T cells led to a significant reduction of chlamydiae in quantitative organ culture coupled with unremarkable histopathology. These data confirm that T cell-mediated immune responses are essential for immune protection in chlamydial infection, although total eradication of the agent could not be achieved. Further experiments are needed to stress the importance of a concerted action of B and T lymphocytes, as indicated by the complete protective efficacy of transferred splenocytes.

PMID:
9832320
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center