Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Dec 4;273(49):32500-5.

The inhibitory upstream open reading frame from mammalian S-adenosylmethionine decarboxylase mRNA has a strict sequence specificity in critical positions.

Author information

Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA.


The upstream open reading frame (uORF) in the 5' leader of the mammalian mRNA encoding S-adenosylmethionine decarboxylase (AdoMetDC) serves as a negative regulatory element by suppressing translation of the associated downstream cistron. Certain changes in the amino acid sequence of the hexapeptide (sequence MAGDIS) encoded by the uORF destroy suppressive activity, implying specific interaction with a cellular target. In this paper, we examine the extent of alterations that can be tolerated in this uORF. The mammalian AdoMetDC uORF inhibits downstream translation when placed into the 5' leader of a yeast mRNA with characteristics resembling those in mammalian cells, suggesting that the encoded peptide has a similar target across species. Using yeast for the initial screen, we tested the specificity of the critical three codons at the 3' end of the uORF by saturation mutagenesis. Altered uORFs selected from the primary yeast screen were then retested in mammalian cells. The requirements at codons 4 and 5 were quite stringent; only aspartic acid at codon 4 yielded a fully suppressive peptide, and only valine could substitute productively for isoleucine at codon 5. The specificity at codon 6 was much looser, with many substitutions retaining suppressive activity in both yeast and mammalian cells.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center