Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1998 Dec 1;18(23):9673-84.

Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms.

Author information

  • 1Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4.


Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene are responsible for a subset of familial cases of amyotrophic lateral sclerosis. Using a primary culture model, we have demonstrated that normally nontoxic glutamatergic input, particularly via calcium-permeable AMPA/kainate receptors, is a major factor in the vulnerability of motor neurons to the toxicity of SOD-1 mutants. Wild-type and mutant (G41R, G93A, or N139K) human SOD-1 were expressed in motor neurons of dissociated cultures of murine spinal cord by intranuclear microinjection of plasmid expression vector. Both a general antagonist of AMPA/kainate receptors (CNQX) and a specific antagonist of calcium-permeable AMPA receptors (joro spider toxin) reduced formation of SOD-1 proteinaceous aggregates and prevented death of motor neurons expressing SOD-1 mutants. Partial protection was obtained by treatment with nifedipine, implicating Ca2+ entry through voltage-gated calcium channels as well as glutamate receptors in potentiating the toxicity of mutant SOD-1 in motor neurons. Dramatic neuroprotection was obtained by coexpressing the calcium-binding protein calbindin-D28k but not by increasing intracellular glutathione levels or treatment with the free radical spin trap agent, N-tert-butyl-alpha-phenylnitrone. Thus, generalized oxidative stress could have contributed in only a minor way to death of motor neurons expressing the mutant SOD-1. These studies demonstrated that the toxicity of these mutants is calcium-dependent and provide direct evidence that calcium entry during neurotransmission, coupled with deficiency of cytosolic calcium-binding proteins, is a major factor in the preferential vulnerability of motor neurons to disease.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center