Send to

Choose Destination
Am J Pathol. 1998 Nov;153(5):1411-23.

In situ visualization of intratumor growth factor signaling: immunohistochemical localization of activated ERK/MAP kinase in glial neoplasms.

Author information

Department of Pathology (Neuropathology), University of Virginia School of Medicine, Charlottesville 22908, USA.


Abnormal growth factor signaling is implicated in the pathogenesis of gliomas. The extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway is a likely target, linking receptor tyrosine kinase activation to downstream serine/threonine phosphorylation events regulating proliferation and differentiation. Signaling within heterogeneous cell populations of gliomas cannot be adequately assessed by traditional biochemical enzyme assays. Immunohistochemical detection of doubly phosphorylated (activated) ERK/MAPK permitted visualization of spatially discrete cellular patterns of ERK/MAPK activation, compared with the relatively uniform expression of total ERK/MAPK protein. The astrocytic tumors, regardless of grade, had the highest overall degree of enzyme activation, whereas oligodendrogliomas had the least. Anaplastic progression in oligodendrogliomas resulted in a larger number of cells with active ERK/MAPK. Within glioblastomas, microvascular hyperplasia and necrosis were associated with ERK/MAPK activation in adjacent tumor cells. In addition to spatial patterns of intratumor paracrine signaling, a possible cell-cycle-associated regulation was detected: mitotic and actively cycling tumor cells showed diminished activation relative to cells in G0. Although ERK/MAPK activation was not restricted to neoplastic glia, consistent patterns of selective activation in tumor cells suggests that sustained activation may contribute to the neoplastic glial phenotype.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center