Send to

Choose Destination
Mutat Res. 1998 Oct 21;409(1):31-6.

Differential inhibitory effect of OK-1035 on DNA repair in L5178Y murine lymphoma sublines with functional or defective repair of double strand breaks.

Author information

Department of Radiobiology and Health Protection, Institute of Nuclear Chemistry and Technology, Warsaw, Poland.


Radiosensitive L5178Y-S (LY-S) subline and its parental, more radioresistant L5178Y-R (LY-R) subline differ in DNA double strand break (DSB) rejoining. In this work we examined by comet assay the repair of X-ray-induced DNA damage in LY cells treated with OK-1035, a potent DNA-PK inhibitor. The unirradiated cells differ: the respective tail moment values for LY-R and LY-S cells were 9.62+/-2.84 and 3.52+/-0.1, reflecting the susceptibility to lysis conditions as well as the possible endogenous (oxidative) damage level. The level of initial DNA damage measured after irradiation (8 Gy) at DNA-denaturing pH was the same in both LY sublines: the mean tail moment values +/- SD were 92.93+/-10.39 for LY-R cells and 94.93+/-12.94 for LY-S cells. In LY-S cells the repair of 8 Gy X-ray-induced damage proceeded identically in the presence or absence of 2 mM OK-1035 to the same level of residual damage. In contrast, the level of residual damage in inhibitor treated LY-R cells was considerably higher than that in the untreated cells. Moreover, the inhibitor affected LY-R cells in G1 and S phases and not those in G2, in agreement with cell-cycle specificity of DNA-PK. These results may indicate that the DSB repair defect previously identified in LY-S cells is due to a lack of function of DNA-PK or its impaired activation in the irradiated cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center