Send to

Choose Destination
See comment in PubMed Commons below
Magn Reson Med. 1998 Nov;40(5):769-82.

Polar sampling in k-space: reconstruction effects.

Author information

Department of Medical Biophysics, University of Western Ontario, London, Canada.


Magnetic resonance images are most commonly computed by taking the inverse Fourier transform of the k-space data. This transformation can potentially create artifacts in the image, depending on the reconstruction algorithm used. For equally spaced radial and azimuthal k-space polar sampling, both gridding and convolution backprojection are applicable. However, these algorithms potentially can yield different resolution, signal-to-noise ratio, and aliasing characteristics in the reconstructed image. Here, these effects are analyzed and their tradeoffs are discussed. It is shown that, provided the modulation transfer function and the signal-to-noise ratio are considered together, these algorithms perform similarly. In contrast, their aliasing behavior is different, since their respective point spread functions (PSF) differ. In gridding, the PSF is composed of the mainlobe and ringlobes that lead to aliasing. Conversely, there are no ringlobes in the convolution backprojection PSF, thus radial aliasing effects are minimized. Also, a hybrid gridding and convolution backprojection reconstruction is presented for radially nonequidistant k-space polar sampling.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center