Send to

Choose Destination
Endocrinology. 1998 Nov;139(11):4531-9.

The new antidiabetic drug MCC-555 acutely sensitizes insulin signaling in isolated cardiomyocytes.

Author information

Molecular Cardiology, Diabetes Research Institute, Düsseldorf, Germany.


Freshly isolated adult rat ventricular cardiomyocytes have been used to characterize the action profile of the new thiazolidinedione antidiabetic drug MCC-555. Preincubation of cells with the compound (100 microM for 30 min or 10 microM for 2 h) did not modify basal 3-O-methylglucose transport, but produced a marked sensitizing effect (2- to 3-fold increase in insulin action at 3 x 10(-11) M insulin) and a further enhancement of maximum insulin action (1.8-fold). MCC-555 did not modulate autophosphorylation of the insulin receptor and tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). However, insulin action (10(-10) and 10(-7) M) on IRS-1-associated phosphatidylinositol (PI) 3-kinase activity was enhanced 2-fold in the presence of MCC-555. Association of the p85 adapter subunit of PI 3-kinase to IRS-1 was not modified by the drug. Immunoblotting experiments demonstrated expression of the peroxisomal proliferator-activated receptor-gamma in cardiomyocytes reaching about 30% of the abundance observed in adipocytes. The insulin-sensitizing effect of MCC-555 was lost after inhibition of protein synthesis by preincubation of the cells with cycloheximide (1 mM; 30 min). Cardiomyocytes from obese Zucker rats exhibited a completely blunted response of glucose transport at 3 x 10(-11) M insulin. MCC-555 ameliorates this insulin resistance, producing a 2-fold stimulation of glucose transport, with maximum insulin action being 1.6-fold higher than that in control cells. This drug effect was paralleled by a significant dephosphorylation of IRS-1 on Ser/Thr. In conclusion, MCC-555 rapidly sensitizes insulin-stimulated cardiac glucose uptake by enhancing insulin signaling resulting from increased intrinsic activity of PI 3-kinase. Acute activation of protein expression leading to a modulation of the Ser/Thr phosphorylation state of signaling proteins such as IRS-1 may be underlying this process. It is suggested that MCC-555 may provide a causal therapy of insulin resistance by targeted action on the defective site in the insulin signaling cascade.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center