Format

Send to

Choose Destination
Oncogene. 1998 Sep 24;17(12):1587-95.

Autophosphorylation of Src and Yes blocks their inactivation by Csk phosphorylation.

Author information

1
Department of Neuro-Oncology, University of Texas, MD Anderson Cancer Center, Houston 77030, USA.

Abstract

Csk phosphorylates Src family protein tyrosine kinases on a tyrosine residue near their C-terminus and downregulates their activity. We previously observed that this regulation requires a stoichiometric ratio of Csk:Src in a time-independent manner. In this report we examined this unusual kinetic behavior and found it to be caused by Src autophosphorylation. First, pre-incubation of Src with ATP-Mg led to time-dependent autophosphorylation of Src, activation of its kinase activity and loss of its ability to be inactivated by Csk. However, the autophosphorylated Src can still be phosphorylated by Csk. The SH2 binding site for phospho-Tyr of this hyperactive and doubly phosphorylated form of Src is not accessible. Second, dephosphorylation of autophosphorylated Src by protein tyrosine phosphatase 1B allowed Src to be inactivated by Csk. Third, protein tyrosine phosphatase 1B preferentially dephosphorylates the Src autophosphorylation site and allows for Src regulation by Csk. Finally, Yes, another member of the Src family, was also only partially inactivated when a sub-stoichiometric amount of Csk was used. Mutation of the tyrosine autophosphorylation site of Yes to a phenylalanine resulted in a mutant Yes enzyme that can be fully inactivated by a sub-stoichiometric amount of Csk in a time-dependent manner. These results demonstrate that Csk phosphorylation inactivates Src and Yes only when they are not previously autophosphorylated and Src autophosphorylation can block the inactivation by Csk phosphorylation. This conclusion suggests a dynamic model for the regulation of the Src family protein tyrosine kinases, which is discussed in the context of previously reported observations on the regulation of Src family protein tyrosine kinases.

PMID:
9794236
DOI:
10.1038/sj.onc.1202076
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center