Send to

Choose Destination
Gen Pharmacol. 1998 Oct;31(4):545-52.

Lipocortin 1 and chemokine modulation of granulocyte and monocyte accumulation in experimental inflammation.

Author information

Department of Biochemical Pharmacology, The William Harvey Research Institute, London, United Kingdom.


1. Migration of blood-derived leukocytes to tissue sites of inflammation is a hallmark of the response that the host organizes to counteract an insult or a trauma or an infection. A cascade of events is then activated to allow interaction between the leukocyte and the endothelium of postcapillary venule, and this cascade is finely regulated such that mechanisms of negative control are operating side by side with pathways that promote and sustain the extravasation process. Examples of both these positive and negative regulatory systems are discussed here. 2. In vivo accumulation of specific subtypes of leukocytes in response to application of selective chemokines operates through an indirect mechanism that includes the perivenular mast cell and, in particular, the mast cell-derived amines, such as histamine and serotonin. In fact, treatments of animals with (1) histamine H1 or serotonin antagonists or with (2) the mast cell stabilizer cromolyn or with (3) prior depletion of intact mast cells are maneuvers that successfully reduce eosinophil, neutrophil and monocyte extravasation in response to eotaxin, interleukin-8 or monocyte chemoattractant protein-1, respectively. A model in which histamine provides a P-selectin-dependent rolling phenomenon is then postulated. 3. The discovery that neutrophil-derived lipocortin 1 acts as an autocrine mediator with an inhibitory action on the emigration (diapedesis) process confirms the growing body of experimental data that showed that exogenously administered lipocortin 1 and lipocortin 1 mimetics (peptide Ac2-26) potently inhibit neutrophil extravasation in response to different stimuli. Externalization of lipocortin 1 on the plasma membrane of adherent neutrophils reduces their rate of passage through the endothelial gaps. Because cell-associated lipocortin 1 levels are under the partial control of corticosterone (endogenous circulating glucocorticoid hormone in rodents) and dexamethasone (a synthetic glucocorticoid hormone with a potent anti-inflammatory profile), a model is proposed in which a balance between anti-inflammatory (lipocortin 1, etc.) and pro-inflammatory (adhesion molecules, cytokines and chemokines) mediators explains the difference in the rate of leukocyte accumulation during the different stages of the host inflammatory response. 4. In conclusion, this review emphasizes the importance of in vivo experimental systems as a valid way of obtaining pertinent observations and reiterates the importance of negative regulatory mechanisms on the leukocyte extravasation process operating within the host.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center