Format

Send to

Choose Destination
J Mol Biol. 1998 Nov 6;283(4):771-83.

RNase P RNA structure and cleavage reflect the primary structure of tRNA genes.

Author information

1
Biomedical Centre, Uppsala, SE-751 23, Sweden.

Abstract

The function of RNase P RNA depends on its folding in space. A majority of RNase P RNAs from various bacteria show a similar secondary structure to that of Escherichia coli (M1 RNA). However, there are exceptions as exemplified by the RNase P RNA derived from the low GC-content Gram-positive bacteria Bacillus subtilis and Mycoplasma hyopneumoniae (Hyo P RNA). Previous studies using M1 RNA and Hyo P RNA suggest differences both with respect to the kinetics of cleavage as well as to cleavage site recognition. Here we have studied cleavage by these two structurally different RNase P RNAs as a function of changes in the 5' leader and the 3'-terminal CCA motif in the substrate. Our data suggest that the nucleotide at the -2 position in the 5' leader plays a role both for cleavage site recognition and for the rate of cleavage. However, depending on the identity of the -2 residue differences in the cleavage pattern comparing these two types of RNase P RNAs were observed. The results also suggest that the identity of the -1/+73 base-pair in the substrate influences the cleavage site recognition process. These findings will be related to differences in structure comparing these types of RNase P RNAs and the "RCCA-RNase P RNA" interaction. In addition, our findings will be discussed with respect to the primary structure of the tRNA genes in different bacteria.

PMID:
9790839
DOI:
10.1006/jmbi.1998.2135
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center