Send to

Choose Destination
J Neurosci Res. 1998 Oct 15;54(2):233-47.

Laminin-like proteins are differentially regulated during cerebellar development and stimulate granule cell neurite outgrowth in vitro.

Author information

Laboratory of Developmental Biology, National Institute for Dental Research, National Institutes of Health, Bethesda, Maryland 20892, USA.


The basement membrane glycoprotein laminin-1 is a potent stimulator of neurite outgrowth. Although a variety of laminin isoforms have been described in recent years, the role of alternative laminin isoforms in neural development remains largely uncharacterized. We found that a polyclonal antibody raised against the alpha1, beta1, and gamma1 chains of laminin-1 and a monoclonal antibody raised against the alpha2 chain of laminin-2 detect immunoreactive material in neuronal cell bodies in the developing mouse cerebellum. In addition, laminin-1-like immunoreactivity was found in cell types throughout the cerebellum, but laminin-alpha2-like immunoreactivity was restricted to the Purkinje cells. Purified laminin-1 and laminin-2 stimulated neurite outgrowth in primary cultures of mouse cerebellar granule neurons to a similar extent, whereas the synthetic peptides tested appeared to be active only for cell adhesion and not for stimulation of neurite outgrowth. The E8 proteolytic fragment of laminin-1 contained full neurite outgrowth activity. The identity of laminins expressed in granule neurons was also examined by Western blotting; laminin-like complexes were associated with the cell and appeared to have novel compositions. These results suggest that laminin-like complexes play important roles in cerebellar development.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center