Format

Send to

Choose Destination
See comment in PubMed Commons below

Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus).

Author information

1
Department of Integrative Biology, University of California, Berkeley 94720-3140, USA. rkram@socrates.berkeley.edu

Abstract

As red kangaroos hop faster over level ground, their rate of oxygen consumption (indicating metabolic energy consumption) remains nearly the same. This phenomenon has been attributed to exceptional elastic energy storage and recovery via long compliant tendons in the legs. Alternatively, red kangaroos may have exceptionally efficient muscles. To estimate efficiency, we measured the metabolic cost of uphill hopping, where muscle fibers must perform mechanical work against gravity. We found that uphill hopping was much more expensive than level hopping. The maximal rate of oxygen consumption measured (3 ml O2 kg-1 s-1) exceeds all but a few vertebrate species. However, efficiency values were normal, approximately 30%. At faster level hopping speeds the effective mechanical advantage of the extensor muscles of the ankle joint remained the same. Thus, kangaroos generate the same muscular force at all speeds but do so more rapidly at faster hopping speeds. This contradicts a recent hypothesis for what sets the cost of locomotion. The cost of transport (J kg-1 m-1) decreases at faster hopping speeds, yet red kangaroos prefer to use relatively slow speeds that avoid high levels of tendon stress.

PMID:
9787777
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center